Strain engineering a multiferroic monodomain in thin-film BiFeO3

Physical Review Applied American Physical Society 11:2 (2019) 024035

Authors:

Noah Waterfield Price, Anuradha Vibhakar, Roger Johnson, J Schad, W Saenrang, A Bombardi, Francis Chmiel, CB Eom, Paolo Radaelli

Abstract:

The presence of domains in ferroic materials can negatively affect their macroscopic properties and hence their usefulness in device applications. From an experimental perspective, measuring materials comprising multiple domains can complicate the interpretation of material properties and their underlying mechanisms. In general, BiFeO3 films tend to grow with multiple magnetic domains and often contain multiple ferroelectric and ferroelastic domain variants. By growing (111)-oriented BiFeO3 films on an orthorhombic TbScO3 substrate, we are able to overcome this, and, by exploiting the magnetoelastic coupling between the magnetic and crystal structures, bias the growth of a given magnetic-, ferroelectric-, and structural-domain film. We further demonstrate the coupling of the magnetic structure to the ferroelectric polarisation by showing the magnetic polarity in this domain is inverted upon 180° ferroelectric switching.

The magnetic structure and spin-flop transition in the A-site columnar-ordered quadruple perovskite $\mathrm{TmMn_3O_6}$

(2019)

Authors:

AM Vibhakar, DD Khalyavin, P Manuel, L Zhang, K Yamaura, PG Radaelli, AA Belik, RD Johnson

Magnetic structure and spin-flop transition in the A-site columnar-ordered quadruple perovskite TmMn3O6

PHYSICAL REVIEW B 99:10 (2019) ARTN 104424

Authors:

AM Vibhakar, DD Khalyavin, P Manuel, L Zhang, K Yamaura, PG Radaelli, AA Belik, RD Johnson

Helical magnetism in Sr-doped CaMn7O12 films

Physical Review B American Physical Society 98:22 (2018) 224419

Authors:

A Huon, Anuradha M Vibhakar, AJ Grutter, JA Borchers, S Disseler, Y Liu, W Tian, F Orlandi, P Manuel, DD Khalyavin, Y Sharma, A Herklotz, HN Lee, Fitzsimmons, Roger Johnson, SJ May

Abstract:

Noncollinear magnetism can play an important role in multiferroic materials but is relatively understudied in oxide heterostructures compared to their bulk counterparts. Using variable temperature magnetometry and neutron diffraction, we demonstrate the presence of helical magnetic ordering in CaMn7O12 and Ca1−xSrxMn7O12 (for x up to 0.51) thin films. Consistent with bulk Ca1−xSrxMn7O12, the net magnetization increases with Sr doping. Neutron diffraction confirms that the helical magnetic structure remains incommensurate at all values of x, while the fundamental magnetic wavevector increases upon Sr substitution. This result demonstrates a chemical-based approach for tuning helical magnetism in quadruple perovskite films and enables future studies of strain and interfacial effects on helimagnetism in oxide heterostructures.

Systematic study of ferromagnetism in CrxSb2-xTe3 topological insulator thin films using electrical and optical techniques

Scientific Reports Springer Nature 8 (2018) 17024

Authors:

A Singh, V Kamboj, J Liu, J Llandro, Liam Duffy, SP Senanayak, HE Beere, A Ionescu, DA Ritchie, Thorsten Hesjedal, CHW Barnes

Abstract:

Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrxSb2−xTe3 thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (Tc) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at Tc, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications.