Magnetoelastic coupling and symmetry breaking in the frustrated antiferromagnet alpha-NaMnO2.

Phys Rev Lett 99:24 (2007) 247211

Authors:

Maud Giot, Laurent C Chapon, John Androulakis, Mark A Green, Paolo G Radaelli, Alexandros Lappas

Abstract:

The magnetic and crystal structures of the alpha-NaMnO2 have been determined by high-resolution neutron powder diffraction. The system maps out a frustrated triangular spin lattice with anisotropic interactions that displays two-dimensional spin correlations below 200 K. Magnetic frustration is lifted through magneto-elastic coupling, evidenced by strong anisotropic broadening of the diffraction profiles at high temperature and ultimately by a structural phase transition at 45 K. In this low-temperature regime a three-dimensional antiferromagnetic state is observed with a propagation vector k=(1/2,1/2,0).

Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2

(2007)

Authors:

E Wawrzynska, R Coldea, EM Wheeler, T Sorgel, M Jansen, RM Ibberson, PG Radaelli, MM Koza

Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2

ArXiv 0710.2811 (2007)

Authors:

E Wawrzynska, R Coldea, EM Wheeler, T Sorgel, M Jansen, RM Ibberson, PG Radaelli, MM Koza

Abstract:

We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spin Ni3+ with spin-1/2 and two-fold orbital degeneracy, arranged in an antiferromagnetic triangular lattice with frustrated spin and orbital order. A structural transition occurs upon cooling below 365 K to a tripled hexagonal unit cell containing three crystallographically-distinct Ni sites with expanded and contracted NiO6 octahedra, naturally explained by spontaneous charge order on the Ni triangular layers. No Jahn-Teller distortions occur, suggesting that charge order occurs in order to lift the orbital degeneracy. Symmetry analysis of the inferred Ni charge order pattern and the observed oxygen displacement pattern suggests that the transition could be mediated by charge fluctuations at the Ni sites coupled to a soft oxygen optical phonon breathing mode. At low temperatures the electron-rich Ni sublattice (assigned to a valence close to Ni2+ with S = 1) orders magnetically into a collinear stripe structure of ferromagnetic rows ordered antiferromagnetically in the triangular planes. We discuss the stability of this uncommon spin order pattern in the context of an easy-axis triangular antiferromagnet with additional weak second neighbor interactions and interlayer couplings.

Orbital degeneracy removed by charge order in triangular antiferromagnet AgNiO2.

Phys Rev Lett 99:15 (2007) 157204

Authors:

E Wawrzyńska, R Coldea, EM Wheeler, II Mazin, MD Johannes, T Sörgel, M Jansen, RM Ibberson, PG Radaelli

Abstract:

We report a high-resolution neutron diffraction study on the orbitally degenerate spin-1/2 hexagonal metallic antiferromagnet AgNiO2. A structural transition to a tripled unit cell with expanded and contracted NiO6 octahedra indicates sqrt[3]xsqrt[3] charge order on the Ni triangular lattice. This suggests charge order as a possible mechanism of lifting the orbital degeneracy in the presence of charge fluctuations, as an alternative to the more usual Jahn-Teller distortions. A novel magnetic ground state is observed at low temperatures with the electron-rich S=1 Ni sites arranged in alternating ferromagnetic rows on a triangular lattice, surrounded by a honeycomb network of nonmagnetic and metallic Ni ions. We also report first-principles band-structure calculations that explain microscopically the origin of these phenomena.

Commensurate magnetic structures ofRMn2O5 (R=Y, Ho, Bi) determined by Single-crystal Neutron Diffraction

ArXiv 0710.2065 (2007)

Authors:

C Vecchini LC Chapon, PJ Brown, T Chatterji, S Park S-W Cheong, PG Radaelli

Abstract:

Precise magnetic structures of RMn2O5, with R= Y, Ho, Bi in the commensurate/ferroelectric regime, have been determined by single-crystal neutron diffraction. For each system, the integrated intensities of a large number of independent magnetic Bragg reflections have been measured, allowing unconstrained least-squares refinement of the structures. The analysis confirms the previously reported magnetic configuration in the ab-plane, in particular the existence of zig-zag antiferromagnetic chains. For the Y and Ho compounds additional weak magnetic components parallel to the c-axis were detected which are modulated in phase quadrature with the a-b components. This component is extremely small in the BiMn2O5 sample, therefore supporting symmetric exchange as the principal mechanism inducing ferroelectricity. For HoMn2O5, a magnetic ordering of the Ho moments was observed, which is consistent with a super-exchange interaction through the oxygens. For all three compounds, the point symmetry in the magnetically ordered state is m2m, allowing the polar b-axis found experimentally.