Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

ACS Nano 7:11 (2013) 10023-10031

Authors:

Luca Passoni, Farbod Ghods, Pablo Docampo, Agnese Abrusci, Javier Martí-Rujas, Matteo Ghidelli, Giorgio Divitini, Caterina Ducati, Maddalena Binda, Simone Guarnera, Andrea Li Bassi, Carlo Spartaco Casari, Henry J Snaith, Annamaria Petrozza, Fabio Di Fonzo

Abstract:

In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

Large area hole transporter deposition in efficient solid-state dye-sensitized solar cell mini-modules

Journal of Applied Physics 114:18 (2013)

Authors:

AS Hey, HJ Snaith

Abstract:

We demonstrate the viability of large area processing for solid-state dye-sensitized solar cells. We fabricate mini-modules comprising two photoactive regions connected in series, of 8 cm2 total active area, using the technique of doctor blade coating to deposit the hole-transporter material. For the optimized protocol we lose only 25% of the power conversion efficiency when compared to standard test devices which are only 0.12 cm2. We estimate pore-filling fractions using reflectance spectroscopy, showing that device performance is linked to changes in the volume of the mesoporous TiO 2 photoanode infiltrated with hole-transporter as deposition temperature is varied. © 2013 AIP Publishing LLC.

Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells

Journal of Physical Chemistry Letters 4:21 (2013) 3623-3630

Abstract:

Over the last 12 months, we have witnessed an unexpected breakthrough and rapid evolution in the field of emerging photovoltaics, with the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. In this Perspective, the steps that have led to this discovery are discussed, and the future of this rapidly advancing concept have been considered. It is likely that the next few years of solar research will advance this technology to the very highest efficiencies while retaining the very lowest cost and embodied energy. Provided that the stability of the perovskite-based technology can be proven, we will witness the emergence of a contender for ultimately low-cost solar power. © 2013 American Chemical Society.

The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells

Journal of Materials Chemistry A 1:39 (2013) 12088-12095

Authors:

P Docampo, A Ivaturi, R Gunning, S Diefenbach, J Kirkpatrick, CM Palumbiny, V Sivaram, H Geaney, L Schmidt-Mende, ME Welland, HJ Snaith

Abstract:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

Science 342:6156 (2013) 341-344

Authors:

Samuel D Stranks, Giles E Eperon, Giulia Grancini, Christopher Menelaou, Marcelo JP Alcocer, Tomas Leijtens, Laura M Herz, Annamaria Petrozza, Henry J Snaith

Abstract:

Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.