Enhanced electronic contacts in SnO2-dye-P3HT based solid state dye sensitized solar cells.

Phys Chem Chem Phys 15:6 (2013) 2075-2080

Authors:

Golnaz Sadoughi, Varun Sivaram, Robbert Gunning, Pablo Docampo, Ingmar Bruder, Neil Pschirer, Azam Irajizad, Henry J Snaith

Abstract:

We present an investigation on the optimisation of solid-state dye sensitized solar cells (SDSCs) comprising mesoporous tin oxide photoanodes infiltrated with poly(3-hexylthiophene-2,5-diyl) (P3HT) hole conductor and sensitized with an organic dye. We chose both the SnO(2) and P3HT for their high charge carrier mobilities and conductivities, but as a result preclude conventional device configurations because of high leakage current and low shunt-resistance. To minimize the "hole leakage current" through the FTO anode, we employed a double compact layer structure, and to minimize "electron leakage current" at the silver cathode, we developed a protocol for depositing an optimal P3HT "capping layer". After optimisation of cell fabrication, the electron lifetime is increased considerably and the solar cells exhibited simulated AM1.5 full sun solar power conversion efficiencies in excess of 1%.

Panchromatic "dye-doped" polymer solar cells: From femtosecond energy relays to enhanced photo-response

Journal of Physical Chemistry Letters 4:3 (2013) 442-447

Authors:

G Grancini, R Sai Santosh Kumar, M Maiuri, J Fang, WTS Huck, MJP Alcocer, G Lanzani, G Cerullo, A Petrozza, HJ Snaith

Abstract:

There has been phenomenal effort synthesizing new low-band gap polymer hole-conductors which absorb into the near-infrared (NIR), leading to >10% efficient all-organic solar cells. However, organic light absorbers have relatively narrow bandwidths, making it challenging to obtain panchromatic absorption in a single organic semiconductor. Here, we demonstrate that (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4, 7-(2,1,3-benzothiadia-zole)] (PCPDTBT) can be "photo-sensitized" across the whole visible spectrum by "doping" with a visible absorbing dye, the (2,2,7,7-tetrakis(3-hexyl-5-(7-(4-hexylthiophen-2-yl)benzo[c][1,2,5] thiadiazol-4-yl)thiophen-2-yl)-9,9-spirobifluorene) (spiro-TBT). Through a comprehensive sub-12 femtosecond-nanosecond spectroscopic study, we demonstrate that extremely efficient and fast energy transfer occurs from the photoexcited spiro-TBT to the PCPDTBT, and ultrafast charge injection happens when the system is interfaced with ZnO as a prototypal electron-acceptor compound. The visible photosensitization can be effectively exploited and gives panchromatic photoresponse in prototype polymer/oxide bilayer photovoltaic diodes. This concept can be successfully adopted for tuning and optimizing the light absorption and photoresponse in a broad range of polymeric and hybrid solar cells. © 2013 American Chemical Society.

Dependence of dye regeneration and charge collection on the pore-filling fraction in solid-state dye-sensitized solar cells

Advanced Functional Materials (2013)

Authors:

CT Weisspfennig, DJ Hollman, C Menelaou, SD Stranks, HJ Joyce, MB Johnston, HJ Snaith, LM Herz

Abstract:

Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells

JOURNAL OF MATERIALS CHEMISTRY A 1:23 (2013) 6949-6960

Authors:

Miquel Planells, Antonio Abate, Derek J Hollman, Samuel D Stranks, Vishal Bharti, Jitender Gaur, Dibyajyoti Mohanty, Suresh Chand, Henry J Snaith, Neil Robertson

Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates.

Nat Commun 4 (2013) 2761

Authors:

Pablo Docampo, James M Ball, Mariam Darwich, Giles E Eperon, Henry J Snaith

Abstract:

Organometal trihalide perovskite solar cells offer the promise of a low-cost easily manufacturable solar technology, compatible with large-scale low-temperature solution processing. Within 1 year of development, solar-to-electric power-conversion efficiencies have risen to over 15%, and further imminent improvements are expected. Here we show that this technology can be successfully made compatible with electron acceptor and donor materials generally used in organic photovoltaics. We demonstrate that a single thin film of the low-temperature solution-processed organometal trihalide perovskite absorber CH3NH3PbI3-xClx, sandwiched between organic contacts can exhibit devices with power-conversion efficiency of up to 10% on glass substrates and over 6% on flexible polymer substrates. This work represents an important step forward, as it removes most barriers to adoption of the perovskite technology by the organic photovoltaic community, and can thus utilize the extensive existing knowledge of hybrid interfaces for further device improvements and flexible processing platforms.