Evaluation of a scalar eddy transport coefficient based on geometric constraints

Ocean Modelling Elsevier 109 (2016) 44-54

Authors:

SD Bachman, David P Marshall, JR Maddison, J Mak

Abstract:

A suite of idealized models is used to evaluate and compare several previously proposed scalings for the eddy transport coefficient in downgradient mesoscale eddy closures. Of special interest in this comparison is a scaling introduced as part of the eddy parameterization framework of Marshall et al. (2012), which is derived using the inherent geometry of the Eliassen–Palm eddy flux tensor. The primary advantage of using this coefficient in a downgradient closure is that all dimensional terms are explicitly specified and the only uncertainty is a nondimensional parameter, α, which is bounded by one in magnitude. In each model a set of passive tracers is initialized, whose flux statistics are used to invert for the eddy- induced tracer transport. Unlike previous work, where this technique has been employed to diagnose the tensor coefficient of a linear flux-gradient relationship, the idealization of these models allows the lateral eddy transport to be described by a scalar coefficient. The skill of the extant scalings is then measured by comparing their predicted values against the coefficients diagnosed using this method. The Marshall et al. (2012) scaling is shown to scale most closely with the diagnosed coefficients across all simulations. It is shown that the skill of this scaling is due to its functional dependence on the total eddy energy, and that this scaling provides an excellent match to the diagnosed fluxes even in the limit of constant α. Possible extensions to this work, including how to incorporate the resultant transport coefficient into the Gent and McWilliams parameterization, are discussed.

Overturning in the Subpolar North Atlantic Program: a new international ocean observing system

Bulletin of the the American Meteorological Society American Meteorological Society 98:4 (2016) 737-752

Authors:

M Susan Lozier, Sheldon Bacon, Amy S Bower, Helen L Johnson, David P Marshall

Abstract:

A new ocean observing system has been launched in the North Atlantic in order to understand the linkage between the meridional overturning circulation and deep water formation.

For decades oceanographers have understood the Atlantic Meridional Overturning Circulation (AMOC) to be primarily driven by changes in the production of deep water formation in the subpolar and subarctic North Atlantic. Indeed, current IPCC projections of an AMOC slowdown in the 21st century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep water formation. The motivation for understanding this linkage is compelling since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic (OSNAP), to provide a continuous record of the trans-basin fluxes of heat, mass and freshwater and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the RAPID/MOCHA array at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014 and the first OSNAP data products are expected in the fall of 2017.

A regime diagram for ocean geostrophic turbulence

Quarterly Journal of the Royal Meteorological Society (2016)

Authors:

A Klocker, DP Marshall, SR Keating, PL Read

Abstract:

© 2016 Royal Meteorological Society.A two-dimensional regime diagram for geostrophic turbulence in the ocean is constructed by plotting observation-based estimates of the non-dimensional eddy length-scale against a nonlinearity parameter equal to the ratio of the root-mean-square eddy velocity and baroclinic Rossby phase speed. Two estimates of the eddy length-scale are compared: the equivalent eddy radius inferred from the area enclosed by contours of sea-surface height, and the 'unsuppressed' mixing length, based on an estimate of the eddy diffusivity with mean flow effects removed. For weak nonlinearity, as found in the Tropics, the mixing length mostly corresponds to the stability threshold for baroclinic instability whereas the eddy radius corresponds to the Rhines scale; it is suggested that this mismatch is indicative of the inverse energy cascade that occurs at low latitudes in the ocean and the zonal elongation of eddies. At larger values of nonlinearity, as found at mid- and high latitudes, the eddy length-scales are much shorter than the stability threshold, within a factor of 2.5 of the Rossby deformation radius.

A new gauge-invariant method for diagnosing eddy diffusivities

Ocean Modelling Elsevier 104 (2016) 252-268

Authors:

Julian Mak, James R Maddison, David Marshall

Abstract:

Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale turbulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from unfiltered fluxes are thus contaminated by the presence of these rotational components. Here a new methodology is applied where by eddy diffusivities are diagnosed directly from the eddy force function. The eddy force function depends only upon flux divergences, is independent of any rotational flux components, and is inherently non-local and smooth. A one-shot inversion procedure is applied, minimising the mis-match between parameterised force functions and force functions derived from eddy resolving calculations. This enables diffusivities associated with the eddy potential vorticity and Gent–McWilliams coefficients associated with eddy buoyancy fluxes to be diagnosed. This methodology is applied to multi-layer quasigeostrophic ocean gyre simulations. It is found that:(i) a strictly down-gradient scheme for mixing potential vorticity and quasi-geostrophic buoyancy has limited success in reducing the mis-match compared to one with no sign constraint on the eddy diffusivity or Gent–McWilliams coefficient, with prevalent negative signals around the time-mean jet; (ii) the diagnostic is successful away from the jet region and wind-forced top layer; (iii) the locations of closed mean stream lines correlate with signals of positive eddy potential vorticity diffusivity; (iv) there is indication that the magnitude of the eddy potential vorticity diffusivity correlates well with the eddy energy. Implications for parameterisation are discussed in light of these diagnostic results.

Eddy cancellation of the Ekman cell in subtropical gyres

Journal of Physical Oceanography American Meteorological Society 46:10 (2016) 2995-3010

Authors:

Edward Doddridge, David P Marshall, Andrew McC Hogg

Abstract:

The presence of large-scale Ekman pumping associated with the climatological wind stress curl is the textbook explanation for low biological activity in the subtropical gyres. Using an idealized eddy-resolving model it is shown that Eulerian-mean Ekman pumping may be opposed by an eddy-driven circulation, analogous to the way in which the atmospheric Ferrel cell and the Southern Ocean Deacon cell are opposed by eddy-driven circulations. Lagrangian particle tracking, potential vorticity fluxes, and depth-density streamfunctions are used to show that, in the model, the rectified effect of eddies acts to largely cancel the Eulerian-mean Ekman downwelling. To distinguish this effect from eddy compensation, it is proposed that the suppression of Eulerian-mean downwelling by eddies be called ``eddy cancellation.''