REVIEW AND CRITIC OF METHODS FOR ECONOMIC EVALUATION OF DIGITAL MENTAL HEALTH INTERVENTIONS

VALUE IN HEALTH 23 (2020) S203-S203

Authors:

D Jankovic, D Marshall, L Bojke, P Saramago, L Gega, R Churchill, H Melton, S Brabyn

Sensitivity of deep ocean mixing to local internal tide breaking and mixing efficiency

Geophysical Research Letters Wiley 46:24 (2019) 14622-14633

Authors:

Laura Cimoli, CP Caulfield, HL Johnson, DP Marshall, A Mashayek, AC Naveira Garabato, C Vic

Abstract:

There have been recent advancements in the quantification of parameters describing the proportion of internal tide energy being dissipated locally and the “efficiency” of diapycnal mixing, that is, the ratio of the diapycnal mixing rate to the kinetic energy dissipation rate. We show that oceanic tidal mixing is nontrivially sensitive to the covariation of these parameters. Varying these parameters one at a time can lead to significant errors in the patterns of diapycnal mixing‐driven upwelling and downwelling and to the over and under estimation of mixing in such a way that the net rate of globally integrated deep circulation appears reasonable. However, the local rates of upwelling and downwelling in the deep ocean are significantly different when both parameters are allowed to covary and be spatially variable. These findings have important implications for the representation of oceanic heat, carbon, nutrients, and other tracer budgets in general circulation models.

The impact of ship emission controls recorded by Cloud Properties

Geophysical Research Letters American Geophysical Union 46:21 (2019) 12547-12555

Authors:

E Gryspeerdt, Twp Smith, E O'Keeffe, Mw Christensen, Fw Goldsworth

Abstract:

The impact of aerosols on cloud properties is one of the leading uncertainties in the human forcing of the climate. Ships are large, isolated sources of aerosol creating linear cloud formations known as shiptracks. These are an ideal opportunity to identify and measure aerosol-cloud interactions. This work uses over 17,000 shiptracks during the implementation of fuel sulfur content regulations to demonstrate the central role of sulfate aerosol in ship exhaust for modifying clouds. By connecting individual shiptracks to transponder data, it is shown that almost half of shiptracks are likely undetected, masking a significant contribution to the climate impact of shipping. A pathway to retrieving ship sulfate emissions is demonstrated, showing how cloud observations could be used to monitor air pollution.

Recent contributions of theory to our understanding of the Atlantic Meridional Overturning Circulation

Journal of Geophysical Research: Oceans American Geophysical Union 124:8 (2019) 5376-5399

Authors:

Helen Johnson, P Cessi, David P Marshall, F Schoesser, MA Spall

Abstract:

Revolutionary observational arrays, together with a new generation of ocean and climate models, have provided new and intriguing insights into the Atlantic Meridional Overturning Circulation (AMOC) over the last two decades. Theoretical models have also changed our view of the AMOC, providing a dynamical framework for understanding the new observations and the results of complex models. In this paper we review recent advances in conceptual understanding of the processes maintaining the AMOC. We discuss recent theoretical models that address issues such as the interplay between surface buoyancy and wind forcing, the extent to which the AMOC is adiabatic, the importance of mesoscale eddies, the interaction between the middepth North Atlantic Deep Water cell and the abyssal Antarctic Bottom Water cell, the role of basin geometry and bathymetry, and the importance of a three‐dimensional multiple‐basin perspective. We review new paradigms for deep water formation in the high‐latitude North Atlantic and the impact of diapycnal mixing on vertical motion in the ocean interior. And we discuss advances in our understanding of the AMOC's stability and its scaling with large‐scale meridional density gradients. Along with reviewing theories for the mean AMOC, we consider models of AMOC variability and discuss what we have learned from theory about the detection and meridional propagation of AMOC anomalies. Simple theoretical models remain a vital and powerful tool for articulating our understanding of the AMOC and identifying the processes that are most critical to represent accurately in the next generation of numerical ocean and climate models.

A geometric interpretation of Southern Ocean eddy form stress

Journal of Physical Oceanography American Meteorological Society 49 (2019) 2553-2570

Authors:

M Poulsen, M Jochum, J Maddison, David Marshall, R Nuterman

Abstract:

An interpretation of eddy form stress via the geometry described by the Eliassen-Palm flux tensor is explored. Complimentary to previous works on eddy Reynolds stress geometry, this study shows that eddy form stress is fully described by a vertical ellipse, whose size, shape and orientation with respect to the mean-flow shear determine the strength and direction of vertical momentum transfers. Following a recent proposal, this geometric framework is here used to form a Gent-McWilliams eddy transfer coefficient which depends on eddy energy and a non-dimensional geometric parameter α, bounded in magnitude by unity. α expresses the efficiency by which eddies exchange energy with baroclinic mean-flow via along-gradient eddy buoyancy flux - a flux equivalent to eddy form stress along mean buoyancy contours. An eddy-resolving ocean general circulation model is used to estimate the spatial structure of α in the Southern Ocean and assess its potential to form a basis for parameterization. α averages to a low but positive value of 0.043 within the Antarctic Circumpolar Current, consistent with an inefficient eddy field extracting energy from the mean-flow. It is found that the low eddy efficiency is mainly the result of that eddy buoyancy fluxes are weakly anisotropic on average. α is subject to pronounced vertical structure and is maximum at ∼ 3 km depth where eddy buoyancy fluxes tend to be directed most downgradient. Since α partly sets the eddy form stress in the Southern Ocean, a parameterization for α must reproduce its vertical structure to provide a faithful representation of vertical stress divergence and eddy forcing.