Fast mechanisms linking the Labrador Sea with subtropical Atlantic overturning

Climate Dynamics Springer 60:9-10 (2022) 2687-2712

Authors:

Yavor Kostov, Marie-José Messias, Herlé Mercier, Helen L Johnson, David P Marshall

Abstract:

We use an ocean general circulation model and its adjoint to analyze the causal chain linking sea surface buoyancy anomalies in the Labrador Sea to variability in the deep branch of the Atlantic meridional overturning circulation (AMOC) on inter-annual timescales. Our study highlights the importance of the North Atlantic Current (NAC) for the north-to-south connectivity in the AMOC and for the meridional transport of Lower North Atlantic Deep Water (LNADW). We identify two mechanisms that allow the Labrador Sea to impact velocities in the LNADW layer. The first mechanism involves a passive advection of surface buoyancy anomalies from the Labrador Sea towards the eastern subpolar gyre by the background NAC. The second mechanism plays a dominant role and involves a dynamical response of the NAC to surface density anomalies originating in the Labrador Sea; the NAC adjustment modifies the northward transport of salt and heat and exerts a strong positive feedback, amplifying the upper ocean buoyancy anomalies. The two mechanisms spin up/down the subpolar gyre on a timescale of years, while boundary trapped waves rapidly communicate this signal to the subtropics and trigger an adjustment of LNADW transport on a timescale of months. The NAC and the eastern subpolar gyre play an essential role in both mechanisms linking the Labrador Sea with LNADW transport variability and the subtropical AMOC. We thus reconcile two apparently contradictory paradigms about AMOC connectivity: (1) Labrador Sea buoyancy anomalies drive AMOC variability; (2) water mass transformation is largest in the eastern subpolar gyre.

The biological carbon pump in CMIP6 models: 21st century trends and uncertainties.

Proceedings of the National Academy of Sciences of the United States of America 119:29 (2022) e2204369119

Authors:

Jamie D Wilson, Oliver Andrews, Anna Katavouta, Francisco de Melo Viríssimo, Ros M Death, Markus Adloff, Chelsey A Baker, Benedict Blackledge, Fraser W Goldsworth, Alan T Kennedy-Asser, Qian Liu, Katie R Sieradzan, Emily Vosper, Rui Ying

Abstract:

The biological carbon pump (BCP) stores ∼1,700 Pg C from the atmosphere in the ocean interior, but the magnitude and direction of future changes in carbon sequestration by the BCP are uncertain. We quantify global trends in export production, sinking organic carbon fluxes, and sequestered carbon in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) future projections, finding a consistent 19 to 48 Pg C increase in carbon sequestration over the 21st century for the SSP3-7.0 scenario, equivalent to 5 to 17% of the total increase of carbon in the ocean by 2100. This is in contrast to a global decrease in export production of -0.15 to -1.44 Pg C y-1. However, there is significant uncertainty in the modeled future fluxes of organic carbon to the deep ocean associated with a range of different processes resolved across models. We demonstrate that organic carbon fluxes at 1,000 m are a good predictor of long-term carbon sequestration and suggest this is an important metric of the BCP that should be prioritized in future model studies.

The Bristol CMIP6 Data Hackathon

Weather Wiley 77:6 (2022) 218-221

Authors:

Dann M Mitchell, Emma J Stone, Oliver D Andrews, Jonathan L Bamber, Rory J Bingham, Jo Browse, Matthew Henry, David M MacLeod, Joanne M Morten, Christoph A Sauter, Christopher J Smith, James Thomas, Stephen I Thomson, Jamie D Wilson, the Bristol CMIP6 Data Hackathon Participants

Spurious forces can dominate the vorticity budget of ocean gyres on the c‐grid

Journal of Advances in Modeling Earth Systems American Geophysical Union 14:5 (2022) e2021MS002884

Authors:

Andrew Styles, Michael J Bell, David P Marshall, David Storkey

Abstract:

Gyres are prominent surface structures in the global ocean circulation that often interact with the sea floor in a complex manner. Diagnostic methods, such as the depth-integrated vorticity budget, are needed to assess exactly how such model circulations interact with the bathymetry. Terms in the vorticity budget can be integrated over the area enclosed by streamlines to identify forces that spin gyres up and down. In this article we diagnose the depth-integrated vorticity budgets of both idealized gyres and the Weddell Gyre in a realistic global model. It is shown that spurious forces play a significant role in the dynamics of all gyres presented and that they are a direct consequence of the Arakawa C-grid discretization and the z-coordinate representation of the sea floor. The spurious forces include a numerical beta effect and interactions with the sea floor which originate from the discrete Coriolis force when calculated with the following schemes: the energy conserving scheme; the enstrophy conserving scheme; and the energy and enstrophy conserving scheme. Previous studies have shown that bottom pressure torques provide the main interaction between the depth-integrated flow and the sea floor. Bottom pressure torques are significant, but spurious interactions with bottom topography are similar in size. Possible methods for reducing the identified spurious topographic forces are discussed. Spurious topographic forces can be alleviated by using either a B-grid in the horizontal plane or a terrain-following vertical coordinate.

Acute sensitivity of global ocean circulation and heat content to eddy energy dissipation time‐scale

Geophysical Research Letters American Geophysical Union (AGU) (2022)

Authors:

J MAK, DP MARSHALL, G Madec, JR Maddison