Flow past a cylinder on a beta plane, with application to Gulf Stream separation and the Antarctic Circumpolar Current
Journal of Physical Oceanography 31 (2001) 3274-3283
On the insensitivity of the wind-driven circulation to bottom topography
Journal of Marine Research 59:1 (2001) 1-27
Abstract:
An analytical model is developed for the wind-driven circulation in a continuously stratified ocean overlying variable bottom topography. In the ocean interior we adopt a linear relation between potential vorticity, density and Montgomery potential, resulting in Welander's solution for an adiabatic internal thermocline. The horizontal structure of the circulation is described by a characteristic equation, obtained by imposing a boundary condition of no-normal flow at the sea floor and a prescribed vertical velocity through the base of the surface Ekman layer. The characteristics, which determine the extent to which bottom topography "steers" the circulation within the upper ocean, are dominated by latitude circles at low latitudes, but are increasingly influenced by the bottom topography at higher latitudes as the thermocline widens and intersects the sea floor. A solution is evaluated for the full three-dimensional circulation in the North Pacific. We find classical Sverdrup gyres within the thermocline, increasingly zonal flows at mid-depths, and weak topographically-bounded gyres within the abyssal ocean.An implicit formula for boundary current separation
Journal of Physical Oceanography 31 (2001) 1633-1638
On the dynamics of wind-driven circumpolar currents
Journal of Physical Oceanography 31:11 (2001) 3258-3273
Abstract:
The factors controlling the transport of the Antarctic Circumpolar Current (ACC) have recently been a topic of heated debate. At the latitudes of Drake Passage, potential vorticity contours are uninterrupted by coastlines, and large amplitude flows are possible even with weak forcing and dissipation. The relationship between the dynamics of circumpolar currents and inertial recirculations in closed basins is discussed. In previous studies, Sverdrup balance and baroclinic adjustment theories have both been proposed as theories of the ACC transport. These theories predict the circumpolar transport as various simple functions of the surface wind stress. A series of experiments is performed with a simple channel model, with different wind strengths and different idealized basin geometries, to investigate the relationship between wind strenght and circumpolar transport. The results show that baroclinic adjustment theories do predict transport in the special case of a periodic channel with no topographic variations, or when the wind forcing is very weak. More generally, the transport is determined by a complex interplay between wind forcing, eddy fluxes, and topographic effects. There is no support for the idea that Sverdrup balance determines the transport through Drake Passage.On the validity of downgradient eddy closures in ocean models
Journal of Geophysical Research: Oceans 105:C12 (2000) 28613-28627