Vertical fluxes of potential vorticity and the structure of the thermocline

JOURNAL OF PHYSICAL OCEANOGRAPHY 30:12 (2000) 3102-3112

Dynamics of the Mediterranean salinity tongue

Journal of Physical Oceanography 29:7 (1999) 1425-1441

Authors:

JC Stephens, DP Marshall

Abstract:

A reduced-gravity planetary-geostrophic model of the North Atlantic consisting of two active layers overlying a motionless abyss is developed to investigate the effect of the wind field in shaping the dynamics of the Mediterranean salinity tongue. The model is driven by climatological winds and eastern boundary ventilation in a basin of realistic geometry and includes a parameterization of meddies. The upper-layer depth from the model shows a clear similarity to observations, both in terms of the location and intensity of the subtropical gyre and also the position of the outcropping line in the northern basin. Potential vorticity in layer two reproduces the sweep of potential-vorticity contours southwestward from the eastern boundary and extending westward into the interior, and provides the pathways along which Mediterranean Water spreads into the model interior. The authors solve for the steady salinity field in the second layer, including sources of Upper Labrador Sea Water and Antarctic Intermediate Water on the isopycnal surface. The shape and spreading latitude of the model salinity tongues bear a striking resemblance to observations. Both the wind forcing and the occurrence of a mean transport of Mediterranean Water away from the eastern boundary are crucial in obtaining a realistic salinity tongue. The salinity tongues are remarkably stable to variations in the Peclet number. A simple parameterization of meddies in the model is also included. Where meddies are dissipated locally by collisions with topographic seamounts, for example, they may generate large recirculations extending across to the western boundary. The net effect of these recirculations is to shift the salinity tongue equatorward.

The relation between eddy-induced transport and isopycnic gradients of potential vorticity

Journal of Physical Oceanography 29:7 (1999) 1571-1578

Authors:

DP Marshall, RG Williams, MM Lee

Abstract:

The dynamical control of the eddy-induced transport is investigated in a series of idealized eddy-resolving experiments. When there is an active eddy field, the eddy-induced transport is found to correlate with isopycnic gradients of potential vorticity, rather than gradients of layer thickness. For any unforced layers, the eddy transfer leads to a homogenization of potential vorticity and a vanishing of the eddy-induced transport in the final steady state.

Do we require adiabatic dissipation schemes in Eddy-resolving ocean models?

Journal of Physical Oceanography 28:10 (1998) 2050-2063

Authors:

M Roberts, D Marshall

Abstract:

Use of horizontal diffusion of temperature and salinity in numerical ocean models causes spurious diapycnal transfers - the "Veronis effect" - leading to erosion of the thermocline and reduced poleward heat transports. The authors derive a relation between these diapycnal transfers and the dissipation of vorticity gradients. An increase in model resolution does not significantly reduce the diapycnal transfers since vorticity gradients cascade to smaller scales and must ultimately be dissipated to maintain numerical stability. This is confirmed in an idealized primitive equation ocean model at a variety of resolutions between 1° and 1/8°. Thus, the authors conclude that adiabatic dissipation schemes are required, even in eddy-resolving ocean models. The authors propose and implement a new biharmonic form of the Gent and McWilliams scheme, which adiabatically dissipates at the grid scale while preserving larger-scale features.

How slippery are piecewise-constant coastlines in numerical ocean models?

Tellus, Series A: Dynamic Meteorology and Oceanography 50:1 (1998) 95-108

Authors:

A Adcroft, D Marshall

Abstract:

Coastlines in numerical ocean models are oriented at various finite angles to the model grid. The true coastline is usually replaced by a piecewise-constant approximation in which the model coastline is everywhere aligned with the model grid. Here we study the consequences of the piecewise-constant approximation in an idealised shallow-water ocean model. By rotating the numerical grid at various finite angles to the physical coastlines, we are able to isolate the impact of piecewise-linear boundaries on the model circulation. We demonstrate that piecewise-constant coastlines exert a spurious form stress on model boundary currents, dependent on both the implementation of the slip boundary condition and the form of the viscous stress tensor. In particular, when free-slip boundary conditions are applied, the character of the circulation can be reduced to no-slip in the presence of a piecewise-constant boundary. The spurious form stress can be avoided in a free-slip limit if the viscous stress tensor is written in terms of vorticity and divergence.