Comparative terrestrial atmospheric circulation regimes in simplified global circulation models: II. energy budgets and spectral transfers
Quarterly Journal of the Royal Meteorological Society Wiley 144:717 (2018) 2558-2576
Abstract:
The energetics of possible global atmospheric circulation patterns in an Earth-like atmosphere are explored using a simplified GCM based on the University of Hamburg’s Portable University Model for the Atmosphere (designated here as PUMA-S), forced by linear relaxation towards a prescribed temperature field and subject to Rayleigh surface drag and hyperdiffusive dissipation. Results from a series of simulations, obtained by varying planetary rotation rate Ω with an imposed equator-to-pole temperature difference, were analysed to determine the structure and magnitude of the heat transport and other contributions to the energy budget for the time-averaged, equilibrated flow. These show clear trends with rotation rate, with the most intense Lorenz energy cycle for an Earth-sized planet occurring with a rotation rate around half that of the present day Earth (i.e. Ω* = Ω/ΩE = 1/2, where ΩE is the rotation rate of the Earth). KE and APE spectra, EK(n) and EA(n) (where n is total spherical wavenumber), also show clear trends with rotation rate, with n^-3 enstrophy-dominated spectra around Ω* = 1 and steeper (~ n^-5) slopes in the zonal mean flow with little evidence for the n^-5/3 spectrum anticipated for an inverse KE cascade. Instead, both KE and APE spectra become almost flat at scales larger than the internal Rossby radius, Ld, and exhibit near-equipartition at high wavenumbers. At Ω* << 1, the spectrum becomes dominated by KE with EK(n) ~ (2 - 3)EA(n) at most wavenumbers and a slope that tends towards n^-5/3 across most of the spectrum. Spectral flux calculations show that enstrophy and APE are almost always cascaded downscale, regardless of rotation rate. KE cascades are more complicated, however, with downscale transfers across almost all wavenumbers, dominated by horizontally divergent modes, for Ω* ≲ 1/4. At higher rotation rates, transfers of KE become increasingly dominated by rotational (horizontally non-divergent) components with strong upscale transfers (dominated by eddy-zonal flow interactions) for scales larger than Ld and weaker downscale transfers for scales smaller than Ld.Atmospheric dynamics of terrestrial planets
Chapter in Handbook of Exoplanets, (2018) 385-315
Abstract:
The solar system presents us with a number of planetary bodies with shallow atmospheres that are sufficiently Earth-like in their form and structure to be termed "terrestrial. " These atmospheres have much in common, in having circulations that are driven primarily by heating from the Sun and radiative cooling to space, which vary markedly with latitude. The principal response to this forcing is typically in the form of a (roughly zonally symmetric) meridional overturning that transports heat vertically upward and in latitude. But even within the solar system, these planets exhibit many differences in the types of large-scale waves and instabilities that also contribute substantially to determining their respective climates. Here we argue that the study of simplified models (either numerical simulations or laboratory experiments) provides considerable insights into the likely roles of planetary size, rotation, thermal stratification, and other factors in determining the styles of global circulation and dominant waves and instability processes. We discuss the importance of a number of key dimensionless parameters, for example, the thermal Rossby and the Burger numbers as well as nondimensional measures of the frictional or radiative timescales, in defining the type of circulation regime to be expected in a prototypical planetary atmosphere subject to axisymmetric driving. These considerations help to place each of the solar system terrestrial planets into an appropriate dynamical context and also lay the foundations for predicting and understanding the climate and circulation regimes of (as yet undiscovered) Earth-like extrasolar planets. However, as recent discoveries of "super-Earth" planets around some nearby stars are beginning to reveal, this parameter space is likely to be incomplete, and other factors, such as the possibility of tidally locked rotation and tidal forcing, may also need to be taken into account for some classes of extrasolar planet.The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs
The Astrophysical Journal American Astronomical Society 867:1 (2018) 71-71
Global or local pure-condensible atmospheres: Importance of horizontal latent heat transport
Astrophysical Journal Institute of Physics Publishing, Inc 867:54 (2018)
Failure Mode, Effect, and Criticality Analysis of the Parenteral Nutrition Process in a Mother-Child Hospital: The AMELIORE Study.
Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition 33:5 (2018) 656-666