Ice, fire, or fizzle: The climate footprint of Earth's supercontinental cycles
Geochemistry, Geophysics, Geosystems American Geophysical Union 21:2 (2020) e2019GC008464
Abstract:
Supercontinent assembly and breakup can influence the rate and global extent to which insulated and relatively warm subcontinental mantle is mixed globally, potentially introducing lateral oceanic‐continental mantle temperature variations that regulate volcanic and weathering controls on Earth's long‐term carbon cycle for a few hundred million years. We propose that the relatively warm and unchanging climate of the Nuna supercontinental epoch (1.8–1.3 Ga) is characteristic of thorough mantle thermal mixing. By contrast, the extreme cooling‐warming climate variability of the Neoproterozoic Rodinia episode (1–0.63 Ga) and the more modest but similar climate change during the Mesozoic Pangea cycle (0.3–0.05 Ga) are characteristic features of the effects of subcontinental mantle thermal isolation with differing longevity. A tectonically modulated carbon cycle model coupled to a one‐dimensional energy balance climate model predicts the qualitative form of Mesozoic climate evolution expressed in tropical sea‐surface temperature and ice sheet proxy data. Applied to the Neoproterozoic, this supercontinental control can drive Earth into, as well as out of, a continuous or intermittently panglacial climate, consistent with aspects of proxy data for the Cryogenian‐Ediacaran period. The timing and magnitude of this cooling‐warming climate variability depends, however, on the detailed character of mantle thermal mixing, which is incompletely constrained. We show also that the predominant modes of chemical weathering and a tectonically paced abiotic methane production at mid‐ocean ridges can modulate the intensity of this climate change. For the Nuna epoch, the model predicts a relatively warm and ice‐free climate related to mantle dynamics potentially consistent with the intense anorogenic magmatism of this period.Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants
Environmental Research Letters IOP Publishing 15:4 (2020) 044023
Abstract:
The atmospheric lifetime and radiative impacts of different climate pollutants can both differ markedly, so metrics that equate emissions using a single scaling factor, such as the 100-year Global Warming Potential (GWP100), can be misleading. An alternative approach is to report emissions as 'warming-equivalents' that result in similar warming impacts without requiring a like-for-like weighting per emission. GWP*, an alternative application of GWPs where the CO2-equivalence of short-lived climate pollutant (SLCP) emissions is predominantly determined by changes in their emission rate, provides a straightforward means of generating warming-equivalent emissions. In this letter we illustrate the contrasting climate impacts resulting from emissions of methane, a short-lived greenhouse gas, and CO2, and compare GWP100 and GWP* CO2-equivalents for a number of simple emissions scenarios. We demonstrate that GWP* provides a useful indication of warming, while conventional application of GWP100 falls short in many scenarios and particularly when methane emissions are stable or declining, with important implications for how we consider 'zero emission' or 'climate neutral' targets for sectors emitting different compositions of gases. We then illustrate how GWP* can provide an improved means of assessing alternative mitigation strategies. GWP* allows warming-equivalent emissions to be calculated directly from CO2-equivalent emissions reported using GWP100, consistent with the "Paris Rulebook" agreed by the UNFCCC. It provides a direct link between emissions and anticipated warming impacts, supporting stocktakes of progress towards a long-term temperature goal and compatible with cumulative emissions budgets.Evidence for H2 dissociation and recombination heat transport in the atmosphere of KELT-9b
Astrophysical Journal Letters American Astronomical Society 888:2 (2020) L15
The Snowball Stratosphere
Journal of Geophysical Research: Atmospheres American Geophysical Union 124:22 (2019) 11819-11836
Abstract:
According to the Snowball Earth hypothesis, Earth has experienced periods of low‐latitude glaciation in its deep past. Prior studies have used general circulation models (GCMs) to examine the effects such an extreme climate state might have on the structure and dynamics of Earth's troposphere, but the behavior of the stratosphere has not been studied in detail. Understanding the snowball stratosphere is important for developing an accurate account of the Earth's radiative and chemical properties during these episodes. Here we conduct the first analysis of the stratospheric circulation of the Snowball Earth using ECHAM6 general circulation model simulations. In order to understand the factors contributing to the stratospheric circulation, we extend the Statistical Transformed Eulerian Mean framework. We find that the stratosphere during a snowball with prescribed modern ozone levels exhibits a weaker meridional overturning circulation, reduced wave activity, and stronger zonal jets and is extremely cold relative to modern conditions. Notably, the snowball stratosphere displays no sudden stratospheric warmings. Without ozone, the stratosphere displays a complete lack of polar vortex and even colder temperatures. We also explicitly quantify for the first time the cross‐tropopause mass exchange rate and stratospheric mixing efficiency during the snowball and show that our values do not change the constraints on CO2 inferred from geochemical proxies during the Marinoan glaciation (ca. 635 Ma), unless the O2 concentration during the snowball was orders of magnitude less than the CO2 concentration.The atmospheric circulation of ultra-hot Jupiters
Astrophysical Journal American Astronomical Society 886:1 (2019) 1-20