Atmospheric Circulation of Tidally Locked Gas Giants with Increasing Rotation and Implications for White Dwarf-Brown Dwarf Systems

ASTROPHYSICAL JOURNAL American Astronomical Society 902:1 (2020) ARTN 27

Authors:

Xianyu Tan, Adam P Showman

Abstract:

© 2020. The American Astronomical Society. All rights reserved. Tidally locked gas giants, which exhibit a novel regime of day–night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects—brown dwarfs orbiting white dwarfs in extremely tight orbits—whose orbital and hence rotation periods are as short as 1–2 hr. Phase curves and other observations have already been obtained for this class of objects, raising fundamental questions about the role of an increasing planetary rotation rate in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work, we investigate atmospheric circulation of tidally locked atmospheres with decreasing rotation periods (increasing rotation rate) down to 2.5 hr. With a decreasing rotation period, we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of the equatorial waveguide due to a decrease of the equatorial deformation radius. The eastward-shifted equatorial hot-spot offset decreases accordingly, and the off-equatorial westward-shifted hot areas become increasingly distinctive. At high latitudes, winds become weaker and more rotationally dominated. The day–night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit variability, presumably caused by instabilities and wave interactions. Unlike typical hot Jupiter models, the thermal phase curves of rapidly rotating models show a near alignment of peak flux to secondary eclipse. This result helps to explain why, unlike hot Jupiters, brown dwarfs closely orbiting white dwarfs tend to exhibit IR flux peaks nearly aligned with secondary eclipse. Our results have important implications for understanding fast-rotating, tidally locked atmospheres.

The Phase-curve Signature of Condensible Water-rich Atmospheres on Slowly Rotating Tidally Locked Exoplanets

ASTROPHYSICAL JOURNAL LETTERS 901:2 (2020) ARTN L33

Authors:

Feng Ding, Raymond T Pierrehumbert

The Equatorial Jet Speed on Tidally Locked Planets. I. Terrestrial Planets

ASTROPHYSICAL JOURNAL 901:1 (2020) ARTN 78

Authors:

Mark Hammond, Shang-Min Tsai, Raymond T Pierrehumbert

Continuous structural parameterization: a proposed method for representing different model parameterizations within one structure demonstrated for atmospheric convection

Journal of Advances in Modeling Earth Systems American Geophysical Union 12:8 (2020) e2020MS002085

Authors:

Fh Lambert, Pg Challenor, Neil Lewis, Dj McNeall, N Owen, Ia Boutle, Hm Christensen, Rj Keane, Nj Mayne, A Stirling, Mj Webb

Abstract:

Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resolved simulations of the same process. Using the example of two convection schemes running in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes, and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change from estimates of uncertainty in simulation of the relevant physical processes.

The turbulent dynamics of Jupiter’s and Saturn’s weather layers: order out of chaos?

Geoscience Letters Springer Nature 7:1 (2020) 10

Authors:

Peter L Read, Roland MB Young, Daniel Kennedy

Abstract:

The weather layers of the gas giant planets, Jupiter and Saturn, comprise the shallow atmospheric layers that are influenced energetically by a combination of incoming solar radiation and localised latent heating of condensates, as well as by upwelling heat from their planetary interiors. They are also the most accessible regions of those planets to direct observations. Recent analyses in Oxford of cloud-tracked winds on Jupiter have demonstrated that kinetic energy is injected into the weather layer at scales comparable to the Rossby radius of deformation and cascades both upscale, mostly into the extra-tropical zonal jets, and downscale to the smallest resolvable scales in Cassini images. The large-scale flow on both Jupiter and Saturn appears to equilibrate towards a state which is close to marginal instability according to Arnol’d’s 2nd stability theorem. This scenario is largely reproduced in a hierarchy of numerical models of giant planet weather layers, including relatively realistic models which seek to predict thermal and dynamical structures using a full set of parameterisations of radiative transfer, interior heat sources and even moist convection. Such models include (amongst others) the Jason GCM, developed in Oxford, which also represents the formation of (energetically passive) clouds of NH3, NH4SH and H2O condensates and the transport of condensable tracers. Recent results show some promise in comparison with observations from the Cassini and Juno missions, but some observed features (such as Jupiter’s Great Red Spot and other compact ovals) are not yet captured spontaneously by most weather layer models. We review recent work in this vein and discuss a number of open questions for future study.