Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf

Cryosphere European Geosciences Union 11:1745 (2017) 1745-1765

Authors:

J Nilsson, M Jakobsson, C Borstad, N Kirchner, G Björk, Raymond Pierrehumbert, C Stranne

Abstract:

Recent geological and geophysical data suggest that a 1km thick ice shelf extended over the glacial Arctic Ocean during Marine Isotope Stage 6, about 140000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf, using scaling analyses and a one-dimensional ice-sheet–ice-shelf model. We find that the dynamically most consistent scenario is an ice shelf with a nearly uniform thickness that covers the entire Arctic Ocean. Further, the ice shelf has two regions with distinctly different dynamics: a vast interior region covering the central Arctic Ocean and an exit region towards the Fram Strait. In the interior region, which is effectively dammed by the Fram Strait constriction, there are strong back stresses and the mean ice-shelf thickness is controlled primarily by the horizontally integrated mass balance. A narrow transition zone is found near the continental grounding line, in which the ice-shelf thickness decreases offshore and approaches the mean basin thickness. If the surface accumulation and mass flow from the continental ice masses are sufficiently large, the ice-shelf thickness grows to the point where the ice shelf grounds on the Lomonosov Ridge. As this occurs, the back stress increases in the Amerasian Basin and the ice-shelf thickness becomes larger there than in the Eurasian Basin towards the Fram Strait. Using a one-dimensional ice-dynamic model, the stability of equilibrium ice-shelf configurations without and with grounding on the Lomonosov Ridge are examined. We find that the grounded ice-shelf configuration should be stable if the two Lomonosov Ridge grounding lines are located on the opposites sides of the ridge crest, implying that the downstream grounding line is located on a downward sloping bed. This result shares similarities with the classical result on marine ice-sheet stability of Weertman, but due to interactions between the Amerasian and Eurasian ice-shelf segments the mass flux at the downstream grounding line decreases rather than increases with ice thickness.

Regimes of axisymmetric flow and scaling laws in a rotating annulus with local convective forcing

Fluids MDPI 2:3 (2017) 41

Authors:

Susie Wright, S Su, Hélène Scolan, Roland Young, Peter L Read

Abstract:

We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS) code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.

Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer

Nature Physics Nature Publishing Group 13 (2017) 1135-1140

Authors:

Roland MB Young, Peter L Read

Abstract:

Jupiter’s turbulent weather layer contains phenomena of many different sizes, from local storms up to the Great Red Spot and banded jets. The global circulation is driven by complex interactions with (as yet uncertain) small scale processes. We have calculated structure functions and kinetic energy spectral fluxes from Cassini observations over a wide range of length scales in Jupiter’s atmosphere. We found evidence for an inverse cascade of kinetic energy from length scales comparable with the first baroclinic Rossby deformation radius to the global jet scale, but also a forward cascade of kinetic energy from the deformation radius to smaller scales. The latter disagrees with the traditional picture of Jupiter’s atmospheric dynamics, but has some similarities with mesoscale phenomena in the Earth’s atmosphere and oceans. We conclude that the inverse cascade driving Jupiter’s jets may have a dominant energy source at scales close to the deformation radius, such as baroclinic instability.

Mountain glaciers as paleoclimate proxies

Annual Review of Earth and Planetary Sciences Annual Reviews 49 (2017) 649-680

Authors:

Andrew N Mackintosh, Brian M Anderson, Raymond Pierrehumbert

Abstract:

Glaciers offer the potential to reconstruct past climate over timescales from decades to millennia. They are found on nearly every continent, and at the Last Glacial Maximum, glaciers were larger in all regions on Earth. The physics of glacier-climate interaction is relatively well understood, and glacier models can be used to reconstruct past climate from geological evidence of past glacier extent. This can lead to significant insights regarding past, present and future climate. For example, glacier modelling has demonstrated that the near ubiquitous global pattern of glacier retreat during the last few centuries resulted from a global-scale climate warming of ~1°C, consistent with instrumental data and climate proxy records. Climate reconstructions from glaciers also demonstrated that the tropics were colder at the Last Glacial Maximum than was originally inferred from sea surface temperature reconstructions. Future efforts to reconstruct climate from glaciers may provide new constraints on climate sensitivity to CO2 forcing, polar amplification of climate change, and more.

The Global Circulation

Chapter in The Atmosphere and Climate of Mars, Cambridge University Press (CUP) (2017) 229-294

Authors:

Jeffrey R Barnes, Robert M Haberle, R John Wilson, Stephen R Lewis, James R Murphy, Peter L Read