New use of global warming potentials to compare cumulative and short-lived climate pollutants

Nature Climate Change Nature Publishing Group 6:8 (2016) 773-776

Authors:

Myles R Allen, Jan S Fuglestvedt, Keith P Shine, Andy Reisinger, Raymond Pierrehumbert, Piers M Forster

Abstract:

Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions1. Metric choice can affect the relative emphasis placed on reductions of ‘cumulative climate pollutants’ such as carbon dioxide versus ‘short-lived climate pollutants’ (SLCPs), including methane and black carbon2, 3, 4, 5, 6. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20–40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century7, 8, 9, 10, which may be necessary to limit warming to “well below 2 °C” (ref. 1). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP11, 12, 13. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

Convection in condensible-rich atmospheres

Astrophysical Journal IOP Publishing 822:1 (2016) 24-24

Authors:

F Ding, Raymond Pierrehumbert

Abstract:

Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth's present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

The muscles treasury survey. I. Motivation and overview

Astrophysical Journal American Astronomical Society 820:2 (2016) 89

Authors:

K France, ROP Loyd, A Youngblood, A Brown, PC Schneider, SL Hawley, CS Froning, JL Linsky, A Roberge, AP Buccino, JRA Davenport, JM Fontenla, L Kaltenegger, AF Kowalski, PJD Mauas, Y Miguel, S Redfield, S Rugheimer, F Tian, MC Vieytes, LM Walkowicz, KL Weisenburger

Abstract:

Ground- and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. With so many planets discovered, the next step toward identifying potentially habitable planets is atmospheric characterization. While the Sun–Earth system provides a good framework for understanding the atmospheric chemistry of Earth-like planets around solar-type stars, the observational and theoretical constraints on the atmospheres of rocky planets in the habitable zones (HZs) around low-mass stars (K and M dwarfs) are relatively few. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution (SED), however, flux distributions of relatively inactive low-mass stars are poorly understood at present. To address this issue, we have executed a panchromatic (X-ray to mid-IR) study of the SEDs of 11 nearby planet-hosting stars, the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury Survey. The MUSCLES program consists visible observations from Hubble and ground-based observatories. Infrared and astrophysically inaccessible wavelengths (EUV and Lyα) are reconstructed using stellar model spectra to fill in gaps in the observational data. In this overview and the companion papers describing the MUSCLES survey, we show that energetic radiation (X-ray and ultraviolet) is present from magnetically active stellar atmospheres at all times for stars as late as M6. The emission line luminosities of C iv and Mg ii are strongly correlated with band-integrated luminosities and we present empirical relations that can be used to estimate broadband FUV and XUV (≡X-ray + EUV) fluxes from individual stellar emission line measurements. We find that while the slope of the SED, FUV/NUV, increases by approximately two orders of magnitude form early K to late M dwarfs (≈0.01–1), the absolute FUV and XUV flux levels at their corresponding HZ distances are constant to within factors of a few, spanning the range 10–70 erg cm−2 s−1 in the HZ. Despite the lack of strong stellar activity indicators in their optical spectra, several of the M dwarfs in our sample show spectacular UV flare emission in their light curves. We present an example with flare/quiescent ultraviolet flux ratios of the order of 100:1 where the transition region energy output during the flare is comparable to the total quiescent luminosity of the star Eflare(UV) ~ 0.3 L*Δt (Δt = 1 s). Finally, we interpret enhanced L(line)/LBol ratios for C iv and N v as tentative observational evidence for the interaction of planets with large planetary mass-to-orbital distance ratios (Mplan/aplan) with the transition regions of their host stars.

Global energy budgets and 'Trenberth diagrams' for the climates of terrestrial and gas giant planets

Quarterly Journal of the Royal Meteorological Society Wiley 142:695 (2016) 703-720

Authors:

Peter L Read, Joanna Barstow, Benjamin Charnay, Sivapalan Chelvaniththilan, Patrick GJ Irwin, Sylvia Knight, Sebastien Lebonnois, Stephen R Lewis, Joao Mendonça, Luca Montabone

Abstract:

The climate on Earth is generally determined by the amount and distribution of incoming solar radiation, which must be balanced in equilibrium by the emission of thermal radiation from the surface and atmosphere. The precise routes by which incoming energy is transferred from the surface and within the atmosphere and back out to space, however, are important features that characterize the current climate. This has been analysed in the past by several groups over the years,based on combinations of numerical model simulations and direct observations of theEarths climate system. The results are often presented in schematic form to show the main routes for the transfer of energy into, out of and within the climate system. Although relatively simple in concept, such diagrams convey a great deal of information about the climate system in a compact form. Such an approach has not so far been widely adopted in any systematic way for other planets of the Solar System, let alone beyond, although quite detailed climate models of several planets are now available, constrained bymany new observations and measurements. Here we present an analysis of the global transfers of energy within the climate systems of a range of planets within the Solar System,including Mars, Titan, Venus a nd Jupit er, a s mo delled by rela t ively co mprehens iveradiative transfer and (in some cases) numerical circulation models. These results are presented in schematic form for comparison with the classical global energy budget analyses (e.g.Trenberth et al. 2009; Stephenset al.2012; Wildet al.2013; IPCC 2013)for the Earth, highlighting important similarities and differences. We also take the first steps towards extending this approach to other Solar System and extra-solar planets,including Mars, Venus, Titan, Jupiter and the ‘hot Jupiter’ exoplanet HD189733b, presenting a synthesis of `both previously published and new calculations for all of these planets.

How to decarbonize? Look to Sweden

Bulletin of the Atomic Scientists Routledge 72:2 (2016) 105-111

Abstract:

Bringing global warming to a halt requires that worldwide net emissions of carbon dioxide be brought to essentially zero, and the sooner this occurs, the less warming our descendants for the next thousand years and more will need to adapt to. The widespread fear that the actions needed to bring this about conflict with economic growth is a major impediment to efforts to protect the climate. However, much of this fear is pointless, and the magnitude of the task, while great, is no greater than challenges human ingenuity has surmounted in the past. To light the way forward, there is a need for examining success stories in which nations have greatly reduced their carbon dioxide emissions while simultaneously maintaining vigorous growth in the standard of living. In this article, the example of Sweden is showcased. Through a combination of sensible government infrastructure policies and free-market incentives, Sweden has managed to successfully decarbonize, cutting its per capita emissions by a factor of three since the 1970s, while doubling its pre capita income and providing a wide range of social benefits. This has all be accomplished within a vigorous capitalistic framework which in many ways embodies freemarket principles better than the economy of the United States.