Cumulative carbon as a policy framework for achieving climate stabilization.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 370:1974 (2012) 4365-4379

Authors:

H Damon Matthews, Susan Solomon, Raymond Pierrehumbert

Abstract:

The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO(2) concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO(2) emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO(2) relative to other major climate forcing agents.

Assimilating and Modeling Dust Transport in the Martian Climate System

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 8:S293 (2012) 326-328

Authors:

Tao Ruan, Luca Montabone, Peter L Read, Stephen R Lewis

Diversity of Planetary Atmospheric Circulations and Climates in a Simplified General Circulation Model

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 8:S293 (2012) 297-302

Authors:

Yixiong Wang, Peter Read

Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution

Planetary and Space Science Elsevier 68:1 (2012) 123-145

Authors:

Veronique Dehant, Bruce Banerdt, Philippe Lognonné, Matthias Grott, Sami Asmar, Jens Biele, Doris Breuer, François Forget, Ralf Jaumann, Catherine Johnson, Martin Knapmeyer, Benoit Langlais, Mathieu Le Feuvre, David Mimoun, Antoine Mocquet, Peter Read, Attilio Rivoldini, Oliver Romberg, Gerald Schubert, Sue Smrekar, Tilman Spohn, Paolo Tortora, Stephan Ulamec, Susanne Vennerstrøm

Phase synchronization between stratospheric and tropospheric quasi-biennial and semi-annual oscillations

Quarterly Journal of the Royal Meteorological Society 138:666 (2012) 1338-1349

Authors:

PL Read, AA Castrejón-Pita

Abstract:

A combination of singular systems analysis and analytic phase techniques are used to investigate the possible occurrence in observations of coherent synchronization between quasi-biennial and semi-annual oscillations (QBOs; SAOs) in the stratosphere and troposphere. Time series of zonal mean zonal winds near the Equator are analysed from the ERA-40 and ERA-interim reanalysis datasets over a ∼ 50-year period. In the stratosphere, the QBO is found to synchronize with the SAO almost all the time, but with a frequency ratio that changes erratically between 4:1, 5:1 and 6:1. A similar variable synchronization is also evident in the tropical troposphere between semi-annual and quasi-biennial cycles (known as TBOs). Mean zonal winds from ERA-40 and ERA-interim, and also time series of indices for the Indian and West Pacific monsoons, are commonly found to exhibit synchronization, with SAO/TBO ratios that vary between 4:1 and 7:1. Coherent synchronization between the QBO and tropical TBO does not appear to persist for long intervals, however. This suggests that both the QBO and tropical TBOs may be separately synchronized to SAOs that are themselves enslaved to the seasonal cycle, or to the annual cycle itself. However, the QBO and TBOs are evidently only weakly coupled between themselves and are frequently found to lose mutual coherence when each changes its frequency ratio to its respective SAO. This suggests a need to revise a commonly cited paradigm that advocates the use of stratospheric QBO indices as a predictor for tropospheric phenomena such as monsoons and hurricanes. © 2012 Royal Meteorological Society.