Characterizing the orbital and dynamical state of the HD 82943 planetary system with keck radial velocity data

Astrophysical Journal American Astronomical Society 777:2 (2013) 101-101

Authors:

Xianyu Tan, MJ Payne, MH Lee, EB Ford, AW Howard, JA Johnson, GW Marcy, JT Wright

Abstract:

We present an updated analysis of radial velocity data of the HD 82943 planetary system based on 10 yr of measurements obtained with the Keck telescope. Previous studies have shown that the HD 82943 system has two planets that are likely in 2:1 mean-motion resonance (MMR), with orbital periods about 220 and 440 days. However, alternative fits that are qualitatively different have also been suggested, with two planets in a 1:1 resonance or three planets in a Laplace 4:2:1 resonance. Here we use χ2 minimization combined with a parameter grid search to investigate the orbital parameters and dynamical states of the qualitatively different types of fits, and we compare the results to those obtained with the differential evolution Markov chain Monte Carlo method. Our results support the coplanar 2:1 MMR configuration for the HD 82943 system, and show no evidence for either the 1:1 or three-planet Laplace resonance fits. The inclination of the system with respect to the sky plane is well constrained at $20^{+4.9}_{-5.5}$ degrees, and the system contains two planets with masses of about 4.78 M J and 4.80 M J (where M J is the mass of Jupiter) and orbital periods of about 219 and 442 days for the inner and outer planet, respectively. The best fit is dynamically stable with both eccentricity-type resonant angles θ1 and θ2 librating around 0°.

WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62e AND -62f

The Astrophysical Journal Letters American Astronomical Society 775:2 (2013) l47

Authors:

L Kaltenegger, D Sasselov, S Rugheimer

Nonlinear Phenomena in Atmospheric and Oceanic Sciences

Springer, 2013

Authors:

George Carnevale, Raymond T Pierrehumbert

Abstract:

This IMA Volume in Mathematics and its Applications NONLINEAR PHENOMENA IN ATMOSPHERIC AND OCEANIC SCIENCES is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their ...

Hot climates, high sensitivity.

Proceedings of the National Academy of Sciences of the United States of America 110:35 (2013) 14118-14119

The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

Astrobiology 13:8 (2013) 715-739

Authors:

Aomawa L Shields, Victoria S Meadows, Cecilia M Bitz, Raymond T Pierrehumbert, Manoj M Joshi, Tyler D Robinson

Abstract:

Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO(2) could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3-10 bar of CO(2) will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO(2) is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars.