Lucy Mission Search Plans for Activity around Its Jovian Trojan Flyby Targets

The Planetary Science Journal IOP Publishing 6:7 (2025) 177

Authors:

S Alan Stern, Carly Howett, Neil Dello Russo, Harold A Weaver, James F Bell, Dennis Reuter, Amy Simon, Hannah Kaplan, Keith Noll, John Spencer, Simone Marchi, Hal Levison

Abstract:

Activity in small bodies, defined here as the episodic or continuous release of material, was long thought to be exclusively a behavior of comets, but it has since been discovered in some centaurs, main-belt asteroids, and near-Earth asteroids. To date, however, no activity has been discovered on Jovian trojan asteroids, the target of NASA’s Lucy Discovery Program mission. Although Lucy was originally conceived without studies of or searches for trojan activity, it was realized in 2016–2017 that the spacecraft and scientific payload aboard Lucy could provide unique and meaningful constraints or detections on activity in these trojans. Here we describe how the Lucy mission will search for such activity using (i) its terminal tracking navigation camera to search for wide-field coma scattered light, (ii) its Lucy Long Range Reconnaissance Imager narrow-angle camera to also search for scattered light from any coma or jets, and (iii) its Multispectral Visible Imaging Camera imager to search for CN emission (a common activity tracer species in comets). Sensitivity estimates for each of those measurements are discussed below.

Assessing robustness and bias in 1D retrievals of 3D Global Circulation Models at high spectral resolution: a WASP-76 b simulation case study in emission

(2025)

Authors:

Lennart van Sluijs, Hayley Beltz, Isaac Malsky, Genevieve H Pereira, L Cinque, Emily Rauscher, Jayne Birkby

A Thermal Infrared Emission Spectral Morphology Study of Lizardite 

(2025)

Authors:

Eloïse Brown, Katherine Shirley, Neil Bowles, Tsutomu Ota, Masahiro Yamanaka, Ryoji Tanaka, Christian Potiszil

Abstract:

Research into compositions of small bodies and planetary surfaces, such as asteroids, is key to understanding the origin of water and organics on Earth [1], as well as placing constraints on planetary dynamics and migration models [2] that can help understand how planetary systems around other stars may form and evolve. Compositional estimates can be found with thermal infrared (TIR; 5-25μm) spectroscopy, as the TIR region is rich in diagnostic information and can be used in remote sensing observations and laboratory measurements. However, TIR spectra of the same material may appear differently depending on several factors, such as particle size, surface roughness, porosity etc. This work quantifies the changes in spectral morphology (i.e., shapes and depths of spectral features) as particle size transitions from fine (90%), at several size fractions, aimed to be

An Overview of Lucy L'Ralph Observations at (52246) Donaldjohanson and (152830) Dinkinesh: Visible and Near-Infrared Data of Two Main Belt Asteroids

Copernicus Publications (2025)

Authors:

Hannah Kaplan, Amy Simon, Dennis Reuter, Joshua Emery, Carly Howett, William Grundy, Jessica Sunshine, Silvia Protopapa, Allen Lunsford, Matthew Montanaro, Gerald Weigle, Ishita Solanki, Andy López-Oquendo, John Spencer, Keith Noll, Simone Marchi, Hal Levison, the Lucy Team

Abstract:

Lucy is the first mission to Jupiter Trojan asteroids, primitive bodies preserving crucial evidence of Solar System formation and evolution [1]. En route to its primary science encounters with the L4 swarm Trojans (2027-2028) and L5 swarm (2033), the spacecraft executed a flyby of asteroids (152830) Dinkinesh on November 1, 2023 and (52246) Donaldjohanson (DJ) on April 20, 2025. These Main Belt asteroid flybys function as operational rehearsals for the mission's Trojan targets. This work examines the performance of L'Ralph, a core Lucy science instrument, during these encounters, including data collection, instrument behavior, and analysis of the acquired datasets.L'Ralph integrates two complementary imaging systems spanning visible to near-infrared wavelengths (0.35-4 μm) [2]. The instrument has two focal plane assemblies: the Multi-spectral Visible Imaging Camera (MVIC) operating at 350-950 nm and the Linear Etalon Imaging Spectral Array (LEISA) covering 0.97-3.95 μm. LEISA delivers hyperspectral mapping capabilities with variable spectral resolving power (50-160, Δλ

Comparative study of the retrievals from Venera 11, 13, and 14 spectrophotometric data.

(2025)

Authors:

Shubham Kulkarni, Patrick Irwin, Colin Wilson, Nikolay Ignatiev

Abstract:

Over four decades have elapsed since the last in situ spectrophotometric observations of the Venusian atmosphere, specifically from the Venera 11 (1978) and Venera 13 and 14 (1982) missions. These missions recorded spectral data during their descent from approximately 62 km to the surface. Unfortunately, the original data were lost; however, a portion has been reconstructed by digitising the graphical outputs that were generated during the initial data processing phase of each of the three missions [1]. This reconstructed data is crucial as it remains the sole set of in situ spectrophotometric observations of Venus’s atmosphere and is likely to be so for the foreseeable future.While re-analysing the reconstructed Venera datasets, we identified several artefacts, errors and sources of noise, necessitating the implementation of some corrections and validation checks to isolate the most unaffected part of the reconstructed data. Then, using NEMESIS, a radiative transfer and retrieval tool [2], we conducted a series of retrievals to simultaneously fit the downward-going spectra at all altitudes. During this process, several parameters were retrieved. The first set of retrievals focused on the structure of the main cloud deck (MCD), which includes the cloud base altitude and abundance profiles of all four cloud modes. Previous corrections that were used to account for the effect of the unknown UV absorber did not result in good fits with the spectra shortward of 0.6 µm. Hence, we derived a new correction by retrieving the imaginary refractive index spectra of the Mode 1 particles.In the next phase, the MCD retrievals were used to update the model atmospheres for each of the missions. Then, the H2O volume mixing ratio profiles were retrieved and compared with the previous retrievals using the same data by [1] along with other remote sensing observations. The final retrieval phase concentrated on characterising particulate matter in the deep atmosphere. In [3], we outlined a methodology for retrieving a near-surface particulate layer using the reconstructed Venera 13 dataset. In this new work, we apply this methodology to encompass the Venera 11 and 14 datasets and compare the retrievals from the three datasets.This research thus provides a comprehensive overview of three distinct retrievals: 1) main cloud deck, 2) H2O, and 3) near-surface particulates using the reconstructed spectrophotometric data of Venera 11, 13, and 14.References: [1] Ignatiev, N. I., Moroz, V. I., Moshkin, B. E., Ekonomov, A. P., Gnedykh, V. I., Grigor’ev, A. V., and Khatuntsev, I. V. Cosmic Research 35(1), 1–14 (1997).[2] Irwin, P. G., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J., Tsang, C. C., Wilson, C. F., Calcutt, S. B., Nixon, C. A., and Parrish, P. D. Journal of Quantitative Spectroscopy and Radiative Transfer 109(6), 1136–1150 (2008).[3] Kulkarni, S. V., Irwin, P. G. J., Wilson, C. F., & Ignatiev, N. I. Journal of Geophysical Research: Planets, 130, e2024JE008728, (2025).