Simulating physical weathering of basalt on Earth and Mars

GEOCHIMICA ET COSMOCHIMICA ACTA 71:15 (2007) A1068-A1068

Authors:

Heather Viles, Bethany Ehlmann, Tomasz Cebula, Colin Wilson, Lisa Mol, Mary Bourke

Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm-1 and implications for interpretation of outer planet spectra

Icarus 181:1 (2006) 309-319

Authors:

PGJ Irwin, LA Sromovsky, EK Strong, K Sihra, NA Teanby, N Bowles, SB Calcutt, JJ Remedios

Abstract:

The band model fits of Sihra [1998. Ph.D. Thesis. University of Oxford], subsequently reported by Irwin et al. [2005. Icarus 176, 255-271], to new measurements of low-temperature near-infrared self-broadened methane absorption spectra combined with earlier warmer, longer path measurements of both self- and hydrogen-broadened methane spectra measured by Strong et al. [1993. J. Quant. Spectrosc. Radiat. Transfer 50, 363-429], have been found to contain severe artefacts at wavelengths of very low methane absorption. Although spectra calculated from these new band data appear to be reliable for paths with low to medium absorption, transmissions calculated for long paths of high methane absorption, such as for Uranus, Neptune and Titan are severely compromised. The recorded laboratory transmission spectra of Sihra [1998. Ph.D. Thesis. University of Oxford] and Strong et al. [1993. J. Quant. Spectrosc. Radiat. Transfer 50, 363-429] have thus been refitted with a more robust model and new k-distribution data for both self- and hydrogen-broadened methane absorption derived. In addition, a new model of the temperature dependence of the absorption has been employed that improves the quality of the fit and should also provide more accurate extrapolations to low temperatures. © 2005 Elsevier Inc. All rights reserved.

Latitudinal variations of HCN, HC3N, and C2N2 in Titan's stratosphere derived from cassini CIRS data

Icarus 181 (2006) 243-255

Authors:

NA Teanby, PGJ Irwin, R de Kok, CA Nixon

Atmospheric temperature sounding on Mars, and the climate sounder on the 2005 reconnaissance orbiter

ADV SPACE RES 38:4 (2006) 713-717

Authors:

FW Taylor, SB Calcutt, PL Read, SR Lewis, DJ McCleese, JT Schofield, RW Zurek

Abstract:

Detailed measurements of the vertical profiles of atmospheric temperature, water vapour, dust and condensates in the Martian atmosphere are needed to characterize the present-day Martian climate and to understand the intricately related processes upon which it depends. Among the most important of these are accurate and extensive temperature measurements. Progress to date, key problems still to be addressed and upcoming new approaches to the measurement task are briefly reviewed, and expectations for the Mars Climate Sounder experiment on the 2005 Mars Reconnaissance Orbiter are described. Some even more advanced methods for temperature, humidity and condensate sounding in the decade beyond MCS/MRO, and promising approaches to achieving these are also considered. (c) 2006 Published by Elsevier Ltd on behalf of COSPAR.

Atmospheric temperature sounding on Mars, and the climate sounder on the 2005 reconnaissance orbiter

ADVANCES IN SPACE RESEARCH 38:4 (2006) 713-717

Authors:

FW Taylor, SB Calcutt, PL Read, SR Lewis, DJ McCleese, JT Schofield, RW Zurek