WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K dwarf

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 440:2 (2014) 1470-1489

Authors:

Jayne Birkby, M Cappetta, P Cruz, J Koppenhoefer, O Ivanyuk, Aj Mustill, St Hodgkin, Dj Pinfield, B Sipőcz, G Kovács, R Saglia, Y Pavlenko, D Barrado, A Bayo, D Campbell, S Catalan, L Fossati, M-C Gálvez-Ortiz, M Kenworthy, J Lillo-Box, El Martín, D Mislis, Ejw de Mooij, Sv Nefs, Iag Snellen, H Stoev, J Zendejas, C del Burgo, J Barnes, N Goulding, Ca Haswell, M Kuznetsov, N Lodieu, F Murgas, E Palle, E Solano, P Steele, R Tata

Abstract:

We report the discovery of WTS-2 b, an unusually close-in 1.02-d hot Jupiter (MP = 1.12MJ, RP = 1.30RJ) orbiting a K2V star, which has a possible gravitationally bound M-dwarf companion at 0.6 arcsec separation contributing ∼20 per cent of the total flux in the observed J-band light curve. The planet is only 1.5 times the separation from its host star at which it would be destroyed by Roche lobe overflow, and has a predicted remaining lifetime of just ∼40 Myr, assuming a tidal dissipation quality factor of Q′⋆=106⁠. Q′⋆ is a key factor in determining how frictional processes within a host star affect the orbital evolution of its companion giant planets, but it is currently poorly constrained by observations. We calculate that the orbital decay of WTS-2 b would correspond to a shift in its transit arrival time of Tshift ∼ 17 s after 15 yr assuming Q′⋆=106⁠. A shift less than this would place a direct observational constraint on the lower limit of Q′⋆ in this system. We also report a correction to the previously published expected Tshift for WASP-18 b, finding that Tshift = 356 s after 10 yr for Q′⋆=106⁠, which is much larger than the estimated 28 s quoted in WASP-18 b discovery paper. We attempted to constrain Q′⋆ via a study of the entire population of known transiting hot Jupiters, but our results were inconclusive, requiring a more detailed treatment of transit survey sensitivities at long periods. We conclude that the most informative and straightforward constraints on Q′⋆ will be obtained by direct observational measurements of the shift in transit arrival times in individual hot Jupiter systems. We show that this is achievable across the mass spectrum of exoplanet host stars within a decade, and will directly probe the effects of stellar interior structure on tidal dissipation.

The CO2 continuum absorption in the 1.10- and 1.18-μm windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express

Planetary and Space Science (2014)

Authors:

A Fedorova, A Fedorova, B Bézard, JL Bertaux, O Korablev, O Korablev, C Wilson

Abstract:

© 2014 Elsevier Ltd. One of the difficulties in modeling Venus' nightside atmospheric windows is the need to apply CO2 continuum opacity due to collision-induced CO2 bands and/or extreme far wings of strong allowed CO2 bands. Characterizing the CO2 continuum absorption at near-IR wavelengths as well as searching for a possible vertical gradient of minor species near the surface require observations over different surface elevations. The largest change in altitude occurs during a passage above Maxwell Montes at high northern latitudes. In 2011, 2012 and 2013 the SPICAV instrument aboard the Venus Express satellite performed three sets of observations over Maxwell Montes with variation of surface altitude from -2 to 9km in the 1.10, 1.18 and 1.28-μm windows. The retrieved CO2 continuum absorption for the 1.10- and 1.18-μm windows varies from 0.29 to 0.66×10-9 cm-1 amagat-2 and from 0.30 to 0.78×10-9 cm-1 amagat-2, respectively, depending on the assumed input parameters. The retrieval is sensitive to possible variations of the surface emissivity. Our values fall between the results of Bézard et al., (2009, 2011) based on VIRTIS-M observations and laboratory measurements by Snels et al. (2014). We can also conclude that the continuum absorption at 1.28μm can be constrained below 2.0×10-9 cm-1 amagat-2. Based on the 1.18μm window the constant H2O mixing ratio varying from 25.7+1.4 -1.2 ppm to 29.4+1.6 -1.4 ppm has been retrieved assuming the surface emissivity of 0.95 and 0.6, respectively. No firm conclusion from SPICAV data about the vertical gradient of water vapor content at 10-20km altitude could be drawn because of low signal-to-noise ratio and uncertainties in the surface emissivity.

WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K-dwarf

(2014)

Authors:

JL Birkby, M Cappetta, P Cruz, J Koppenhoefer, O Ivanyuk, AJ Mustill, ST Hodgkin, DJ Pinfield, B Sipőcz, G Kovács, R Saglia, Y Pavlenko, D Barrado, A Bayo, D Campbell, S Catalan, L Fossati, M-C Gálvez-Ortiz, M Kenworthy, J Lillo-Box EL Martín, D Mislis, EJW de Mooij, SV Nefs, IAG Snellen, H Stoev, J Zendejas, C del Burgo, J Barnes, N Goulding, CA Haswell, M Kuznetsov, N Lodieu, F Murgas, E Palle, E Solano, P Steele, R Tata

Line-by-line analysis of Neptune's near-IR spectrum observed with Gemini/NIFS and VLT/CRIRES

Icarus 227 (2014) 37-48

Authors:

PGJ Irwin, E Lellouch, C de Bergh, R Courtin, B Bézard, LN Fletcher, GS Orton, NA Teanby, SB Calcutt, D Tice, J Hurley, GR Davis

Abstract:

New line data describing the absorption of CH4 and CH3D from 1.26 to 1.71μm (WKMC-80K, Campargue, A., Wang, L., Mondelain, D., Kassi, S., Bézard, B., Lellouch, E., Coustenis, A., de Bergh, C., Hirtzig, M., Drossart, P. [2012]. Icarus 219, 110-128) have been applied to the analysis of Gemini-N/NIFS observations of Neptune made in 2009 and VLT/CRIRES observations made in 2010. The new line data are found to greatly improve the fit to the observed spectra and present a considerable advance over previous methane datasets. The improved fits lead to an empirically derived wavelength-dependent correction to the scattering properties of the main observable cloud deck at 2-3bars that is very similar to the correction determined for Uranus' lower cloud using the same line dataset by Irwin et al. (Irwin, P.G.J., de Bergh, C., Courtin, R., Bézard, B., Teanby, N.A., Davis, G.R., Fletcher, L.N., Orton, G.S., Calcutt, S.B., Tice, D., Hurley, J. [2012]. Icarus 220, 369-382). By varying the abundance of CH3D in our simulations, analysis of the Gemini/NIFS observations leads to a new determination of the CH3D/CH4 ratio for Neptune of 3.0-0.9+1.0×10-4, which is smaller than previous determinations, but is identical (to within error) with the CH3D/CH4 ratio of 2.9-0.5+0.9×10-4 derived by a similar analysis of Gemini/NIFS observations of Uranus made in the same year. Thus it appears that the atmospheres of Uranus and Neptune have an almost identical D/H ratio, which suggests that the icy planetisimals forming these planets came from the same source reservoir, or a reservoir that was well-mixed at the locations of ice giant formation, assuming complete mixing between the atmosphere and interior of both these planets. VLT/CRIRES observations of Neptune have also been analysed with the WKMC-80K methane line database, yielding very good fits, with little evidence for missing absorption features. The CRIRES spectra indicate that the mole fraction of CO at the 2-3bar level must be substantially less than its estimated stratospheric value of 1×10-6, which suggests that the predominant source of CO in Neptune's atmosphere is external, through the influx of micrometeorites and comets, although these data cannot rule out an additional internal source. © 2013 Elsevier Inc.

Venus express: Lessons from 8 years of science operations

13th International Conference on Space Operations, SpaceOps 2014 (2014)

Authors:

DR Merritt, RMT Hoofs, MP Ayúcar, CF Wilson

Abstract:

The Venus Express spacecraft was launched in November 2005. This first European mission to Venus arrived at the planet in April 2006, and within a month had completed on-orbit commissioning and was returning science data to Earth. After four mission extensions and eight years, the spacecraft continues to operate successfully. The end of the mission is anticipated to be in 2014, when the on-board fuel supplies are finally exhausted and the required orbit around Venus can no longer be maintained. This paper discusses the lessons learned by the Venus Express Science Operations Centre (VSOC) over the course of the eight year mission, and briefly discusses the plans for the end of the mission.