Target of Opportunity Observations of Gravitational Wave Events with Vera C. Rubin Observatory

(2021)

Authors:

Igor Andreoni, Raffaella Margutti, Om Sharan Salafia, B Parazin, V Ashley Villar, Michael W Coughlin, Peter Yoachim, Kris Mortensen, Daniel Brethauer, SJ Smartt, Mansi M Kasliwal, Kate D Alexander, Shreya Anand, E Berger, Maria Grazia Bernardini, Federica B Bianco, Peter K Blanchard, Joshua S Bloom, Enzo Brocato, Mattia Bulla, Regis Cartier, S Bradley Cenko, Ryan Chornock, Christopher M Copperwheat, Alessandra Corsi, Filippo D'Ammando, Paolo D'Avanzo, Laurence Elise Helene Datrier, Ryan J Foley, Giancarlo Ghirlanda, Ariel Goobar, Jonathan Grindlay, Aprajita Hajela, Daniel E Holz, Viraj Karambelkar, EC Kool, Gavin P Lamb, Tanmoy Laskar, Andrew Levan, Kate Maguire, Morgan May, Andrea Melandri, Dan Milisavljevic, AA Miller, Matt Nicholl, Samaya M Nissanke, Antonella Palmese, Silvia Piranomonte, Armin Rest, Ana Sagues-Carracedo, Karelle Siellez, Leo P Singer, Mathew Smith, D Steeghs, Nial Tanvir

Constraining the nature of FRB-emitting bunches via photo-magnetic cascades

ArXiv 2110.15244 (2021)

Authors:

AJ Cooper, RAMJ Wijers

LMC N132D: a mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV

Astronomy and Astrophysics EDP Sciences 655 (2021) A7

Authors:

H Abdalla, F Aharonian, F Ait Benkhali, Eo Anguner, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, A Barnacka, M Barnard, R Batzofin, Y Becherini, D Berge, K Bernloehr, B Bi, M Boettcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, T Bulik, T Bylund, F Cangemi, S Caroff, S Casanova, J Catalano, P Chambery, T Chand, A Chen, G Cotter, M Curylo, J Damascene Mbarubucyeye, Id Davids, J Davies, J Devin, A Djannati-Atai, A Dmytriiev, A Donath, V Doroshenko, L Dreyer, L Du Plessis, C Duffy, K Egberts, S Einecke

Abstract:

Context Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime.

Aims: The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR.

Methods: We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5σ detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included.

Results: We unambiguously detect N132D at VHE with a significance of 5.7σ. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission.

Conclusions: SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.

Probabilistic orbits and dynamical masses of emission-line binaries

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 509:1 (2021) 367-379

Authors:

David Grant, Katherine Blundell

Abstract:

The observed orbits of emission-line stars may be affected by systematics owing to their broad emission lines being formed in complex and extended environments. This is problematic when orbital parameter probability distributions are estimated assuming radial-velocity data are solely comprised of Keplerian motion plus Gaussian white noise, leading to overconfident and inaccurate orbital solutions, with implications for the inferred dynamical masses and hence evolutionary models. We present a framework in which these systems can be meaningfully analysed. We synthesize benchmark data sets, each with a different and challenging noise formulation, for testing the performance of different algorithms. We make these data sets freely available with the aim of making model validation an easy and standardized practice in this field. Next, we develop an application of Gaussian processes to model the radial-velocity systematics of emission-line binaries, named marginalized GP⁠. We benchmark this algorithm, along with current standardized algorithms, on the synthetic data sets and find our marginalized GP algorithm performs significantly better than the standard algorithms for data contaminated by systematics. Finally, we apply the marginalized GP algorithm to four prototypical emission-line binaries: Eta Carinae, GG Carinae, WR 140, and WR 133. We find systematics to be present in several of these case studies; and consequently, the predicted orbital parameter distributions, and dynamical masses, are modified from those previously determined.

MIGHTEE: total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:2 (2021) 2150-2168

Authors:

I Heywood, Mj Jarvis, Cl Hale, Ih Whittam, Hl Bester, B Hugo, Js Kenyon, M Prescott, Om Smirnov, C Tasse, Jm Afonso, Pn Best, Jd Collier, Rp Deane, Bs Frank, Mj Hardcastle, K Knowles, N Maddox, Ej Murphy, I Prandoni, Sm Randriamampandry, Mg Santos, S Sekhar, F Tabatabaei, Ar Taylor, K Thorat

Abstract:

MIGHTEE is a galaxy evolution survey using siltaneous radio continuum, spectropolarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image 20 deg2 over the COSMOS, E-CDFS, ELAIS-S1, and XMM-Newton Large Scale Structure field (XMM-LSS) extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive ltiwavelength data sets from numerous existing and forthcoming observational campaigns. Here, we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg2) and a three-pointing mosaic in XMM-LSS (3.5 deg2). The processing includes the correction of direction-dependent effects, and results in theal noise levels below 2 ${}$Jy beam-1 in both fields, limited in the central regions by classical confusion at 8 arcsec angular resolution, and meeting the survey specifications. We also produce images at 5 arcsec resolution that are 3 times shallower. The resulting image products fo the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9896 and 20 274 radio components in COSMOS and XMM-LSS, respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broad-band radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide-field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article.