Resonant dynamical friction in nuclear star clusters: rapid alignment of an intermediate-mass black hole with a stellar disk

Astrophysical Journal American Astronomical Society 919:2 (2021) 140

Authors:

Akos Szolgyen, Gergely Mathe, Bence Kocsis

Abstract:

We investigate the dynamical evolution of an intermediate-mass black hole (IMBH) in a nuclear star cluster hosting a supermassive black hole (SMBH) and both a spherical and a flattened disk-like distribution of stellar-mass objects. We use a direct N-body (φGPU) and an orbit-averaged (N-ring) numerical integrator to simulate the orbital evolution of stars and the IMBH. We find that the IMBH's orbit gradually aligns with the stellar disk if their mutual initial inclination is less than 90°. If it is larger than 90°, i.e., counter-rotating, the IMBH does not align. Initially, the rate of orbital reorientation increases linearly with the ratio of the mass of the IMBH over the SMBH mass, and it is orders of magnitude faster than ordinary (i.e., Chandrasekhar) dynamical friction, particularly for high SMBH masses. The semimajor axes of the IMBH and the stars are approximately conserved. This suggests that the alignment is predominantly driven by orbit-averaged gravitational torques of the stars, a process that may be called resonant dynamical friction. The stellar disk is warped by the IMBH, and ultimately increases its thickness. This process may offer a test for the viability of IMBH candidates in the Galactic Center. Resonant dynamical friction is not limited to IMBHs; any object much more massive than disk particles may ultimately align with the disk. This may have implications for the formation and evolution of black hole disks in dense stellar systems and gravitational wave source populations for LIGO, VIRGO, KAGRA, and LISA.

The Thousand-Pulsar-Array programme on MeerKAT - VI. Pulse widths of a large and diverse sample of radio pulsars

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 508:3 (2021) 4249-4268

Authors:

B Posselt, A Karastergiou, S Johnston, A Parthasarathy, Mj Keith, Ls Oswald, X Song, P Weltevrede, Ed Barr, S Buchner, M Geyer, M Kramer, Dj Reardon, M Serylak, Rm Shannon, R Spiewak, V Venkatraman Krishnan

Abstract:

We present pulse width measurements for a sample of radio pulsars observed with the MeerKAT telescope as part of the Thousand-Pulsar-Array (TPA) programme in the MeerTime project. For a centre frequency of 1284 MHz, we obtain 762 W10 measurements across the total bandwidth of 775 MHz, where W10 is the width at the 10 per cent level of the pulse peak. We also measure about 400 W10 values in each of the four or eight frequency sub-bands. Assuming, the width is a function of the rotation period P, this relationship can be described with a power law with power law index μ = -0.29 ± 0.03. However, using orthogonal distance regression, we determine a steeper power law with μ = -0.63 ± 0.06. A density plot of the period-width data reveals such a fit to align well with the contours of highest density. Building on a previous population synthesis model, we obtain population-based estimates of the obliquity of the magnetic axis with respect to the rotation axis for our pulsars. Investigating the width changes over frequency, we unambiguously identify a group of pulsars that have width broadening at higher frequencies. The measured width changes show a monotonic behaviour with frequency for the whole TPA pulsar population, whether the pulses are becoming narrower or broader with increasing frequency. We exclude a sensitivity bias, scattering and noticeable differences in the pulse component numbers as explanations for these width changes, and attempt an explanation using a qualitative model of five contributing Gaussian pulse components with flux density spectra that depend on their rotational phase.

The Thousand-Pulsar-Array programme on MeerKAT – VI. Pulse widths of a large and diverse sample of radio pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press 508:3 (2021) 4249-4268

Authors:

B Posselt, A Karastergiou, S Johnston, A Parthasarathy, Mj Keith, Ls Oswald, X Song, P Weltevrede, Ed Barr, S Buchner, M Geyer, M Kramer, Dj Reardon, M Serylak, Rm Shannon, R Spiewak, V Venkatraman Krishnan

Abstract:

We present pulse width measurements for a sample of radio pulsars observed with the MeerKAT telescope as part of the Thousand-Pulsar-Array (TPA) programme in the MeerTime project. For a centre frequency of 1284 MHz, we obtain 762 W10 measurements across the total bandwidth of 775 MHz, where W10 is the width at the 10 per cent level of the pulse peak. We also measure about 400 W10 values in each of the four or eight frequency sub-bands. Assuming, the width is a function of the rotation period P, this relationship can be described with a power law with power law index μ = −0.29 ± 0.03. However, using orthogonal distance regression, we determine a steeper power law with μ = −0.63 ± 0.06. A density plot of the period-width data reveals such a fit to align well with the contours of highest density. Building on a previous population synthesis model, we obtain population-based estimates of the obliquity of the magnetic axis with respect to the rotation axis for our pulsars. Investigating the width changes over frequency, we unambiguously identify a group of pulsars that have width broadening at higher frequencies. The measured width changes show a monotonic behaviour with frequency for the whole TPA pulsar population, whether the pulses are becoming narrower or broader with increasing frequency. We exclude a sensitivity bias, scattering and noticeable differences in the pulse component numbers as explanations for these width changes, and attempt an explanation using a qualitative model of five contributing Gaussian pulse components with flux density spectra that depend on their rotational phase.

A broad-band radio study of PSR J0250+5854: the slowest spinning radio pulsar known

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 508:1 (2021) 1102-1114

Authors:

CH Agar, P Weltevrede, L Bondonneau, J-M Grießmeier, JWT Hessels, WJ Huang, A Karastergiou, MJ Keith, VI Kondratiev, J Künsemöller, D Li, B Peng, C Sobey, BW Stappers, CM Tan, G Theureau, HG Wang, CM Zhang, B Cecconi, JN Girard, A Loh, P Zarka

Are Delayed Radio Flares Common in Tidal Disruption Events? The Case of the TDE iPTF 16fnl

The Astrophysical Journal Letters American Astronomical Society 920:1 (2021) l5

Authors:

Assaf Horesh, Itai Sfaradi, Rob Fender, David A Green, David RA Williams, Joe S Bright