Radio detections of IR-selected runaway stellar bow shocks

ArXiv 2203.10842 (2022)

Authors:

J Van den Eijnden, P Saikia, S Mohamed

Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in dense massive star clusters

Astrophysical Journal American Astronomical Society 927:2 (2022) 231

Authors:

Giacomo Fragione, Bence Kocsis, Frederic A Rasio, Joseph Silk

Abstract:

Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M and 100 M, while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼103–104 M as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs.

21 new long-term variables in the GX 339-4 field: two years of MeerKAT monitoring

(2022)

Authors:

LN Driessen, BW Stappers, E Tremou, RP Fender, PA Woudt, R Armstrong, S Bloemen, P Groot, I Heywood, A Horesh, AJ van der Horst, E Koerding, VA McBride, JCA Miller-Jones, KP Mooley, A Rowlinson, RAMJ Wijers

Active Galactic Nuclei population studies with the Cherenkov Telescope Array

Proceedings of Science 395 (2022)

Authors:

H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, T Armstrong, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, L Baroncelli, U Barres de Almeida, JA Barrio, D Bastieri, PI Batista, I Batkovic, C Bauer, R Bautista-González, J Baxter, U Becciani, J Becerra González, Y Becherini, G Beck, J Becker Tjus, W Bednarek, A Belfiore, L Bellizzi, R Belmont, W Benbow, D Berge, E Bernardini, MI Bernardos, K Bernlöhr, A Berti

Abstract:

The Cherenkov Telescope Array (CTA) observatory is the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Building on the strengths of current IACTs, CTA is designed to achieve an order of magnitude improvement in sensitivity, with unprecedented angular and energy resolution. CTA will also increase the energy reach of IACTs, observing photons in the energy range from 20 GeV to beyond 100 TeV. These advances in performance will see CTA heralding in a new era for high-energy astrophysics, with the emphasis shifting from source discovery, to population studies and precision measurements. In this talk we discuss CTA’s ability to conduct source population studies of γ-ray bright active galactic nuclei and how this ability will enhance our understanding on the redshift evolution of this dominant γ-ray source class.

Detection methods for the Cherenkov Telescope Array at very-short exposure times

Proceedings of Science 395 (2022)

Authors:

A Di Piano, A Bulgarelli, V Fioretti, L Baroncelli, N Parmiggiani, F Longo, A Stamerra, A López-Oramas, G Stratta, G De Cesare, H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, T Armstrong, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, U Barres de Almeida, JA Barrio, D Bastieri, PI Batista, I Batkovic, C Bauer, R Bautista-González, J Baxter, U Becciani, J Becerra González, Y Becherini, G Beck, J Becker Tjus, W Bednarek

Abstract:

The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. To maximize the scientific return, the observatory will be provided with an online software system that will perform the first analysis of scientific data in real-time. This study investigates the precision and accuracy of available science tools and analysis techniques for the short-term detection of gamma-ray sources, in terms of sky localization, detection significance and, if significant detection is achieved, a first estimation of the integral photon flux. The scope is to evaluate the feasibility of the algorithms' implementation in the real-time analysis of CTA. In this contribution we present a general overview of the methods and some of the results for the test case of the short-term detection of a gamma-ray burst afterglow, as the VHE counterpart of a gravitational wave event.