Towards the first detection of strongly lensed H i emission

Monthly Notices of the Royal Astronomical Society Oxford University Press 484:3 (2019) 3681-3690

Authors:

T Blecher, R Deane, Ian Heywood, D Obreschkow

Tracking the variable jets of V404 Cygni during its 2015 outburst

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 482:3 (2019) 2950-2972

Authors:

AJ Tetarenko, GR Sivakoff, JCA Miller-Jones, M Bremer, KP Mooley, RP Fender, C Rumsey, A Bahramian, D Altamirano, S Heinz, D Maitra, SB Markoff, S Migliari, MP Rupen, DM Russell, TD Russell, CL Sarazin

Discovery and Follow-up of the Unusual Nuclear Transient OGLE17aaj

(2019)

Authors:

M Gromadzki, A Hamanowicz, L Wyrzykowski, KV Sokolovsky, M Fraser, Sz Kozlowski, J Guillochon, I Arcavi, B Trakhtenbrot, PG Jonker, S Mattila, A Udalski, MK Szymanski, I Soszynski, R Poleski, P Pietrukowicz, J Skowron, P Mroz, K Ulaczyk, M Pawlak, KA Rybicki, J Sollerman, F Taddia, Z Kostrzewa-Rutkowska, F Onori, DR Young, K Maguire, SJ Smartt, C Inserra, A Gal-Yam, A Rau, T-W Chen, CR Angus, DAH Buckley

The twisted jets of Circinus X-1

Monthly Notices of the Royal Astronomical Society Oxford University Press 484:2 (2019) 1672-1686

Authors:

M Coriat, Rp Fender, C Tasse, O Smirnov, Ak Tzioumis, Jw Broderick

Abstract:

We present the results of millimetre (33 and 35 GHz) and centimetre (2.1, 5.5, and 9.0 GHz) wavelength observations of the neutron star X-ray binary Circinus X-1, using the Australia Telescope Compact Array. We have used advanced calibration and de-convolution algorithms to overcome multiple issues due to intrinsic variability of the source and direction-dependent effects. The resulting centimetre and millimetre radio maps show spatially resolved jet structures from sub-arcsecond to arcminute angular scales. They represent the most detailed investigation to date of the interaction of the relativistic jet from the X-ray binary with the young supernova remnant in which it is embedded. Comparison of projected jet axes at different wavelengths indicates significant rotation of the jet axis with increasing angular scale. This either suggests interactions of the jet material with surrounding media, creating bends in the jet flow path, or jet precession. We explore the latter hypothesis by successfully modelling the observed jet path using a kinematic jet model. If precession is the right interpretation and our modelling is correct, the best-fitting parameters describe an accreting source with mildly relativistic ejecta (v = 0.5c), inclined close to the plane of the sky (i = 86 ◦ ) and precessing over a 5-yr period.

Timing properties of ULX pulsars: optically thick envelopes and outflows

Monthly Notices of the Royal Astronomical Society Oxford University Press 484:1 (2019) 687-697

Authors:

A Mushtukov, Adam Ingram, M Middleton, D Nagirner, M van der Klis

Abstract:

It has recently been discovered that a fraction of ultraluminous X-ray sources (ULXs) exhibit X-ray pulsations, and are therefore powered by super-Eddington accretion on to magnetized neutron stars (NSs). For typical ULX mass accretion rates (⁠≳1019gs−1⁠), the inner parts of the accretion disc are expected to be in the supercritical regime, meaning that some material is lost in a wind launched from the disc surface, while the rest forms an optically thick envelope around the NS as it follows magnetic field lines from the inner disc radius to the magnetic poles of the star. The envelope hides the central object from a distant observer and defines key observational properties of ULX pulsars: their energy spectrum, polarization, and timing features. The optical thickness of the envelope is affected by the mass losses from the disc. We calculate the mass-loss rate due to the wind in ULX pulsars, accounting for the NS magnetic field strength and advection processes in the disc. We argue that detection of strong outflows from ULX pulsars can be considered evidence of a relatively weak dipole component of the NS magnetic field. We estimate the influence of mass losses on the optical thickness of the envelope and analyse how the envelope affects broad-band aperiodic variability in ULXs. We show that brightness fluctuations at high Fourier frequencies can be strongly suppressed by multiple scatterings in the envelope and that the strength of suppression is determined by the mass accretion rate and geometrical size of the magnetosphere.