Commensal Transient Searches with MeerKAT in Gamma-Ray Burst and Supernova Fields
(2024)
SIROCCO: a publicly available Monte Carlo ionization and radiative transfer code for astrophysical outflows
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:1 (2024) 879-904
Abstract:
<jats:title>ABSTRACT</jats:title> <jats:p>Outflows are critical components of many astrophysical systems, including accreting compact binaries and active galactic nuclei (AGN). These outflows can significantly affect a system’s evolution and alter its observational appearance by reprocessing the radiation produced by the central engine. sirocco (Simulating Ionization and Radiation in Outflows Created by Compact Objects – or ‘the code formerly known as python’) is a Sobolev-based Monte Carlo ionization and radiative transfer code. It is designed to simulate the spectra produced by any system with an azimuthally symmetric outflow, from spherical stellar winds to rotating, biconical accretion disc winds. Wind models can either be parametrized or imported, e.g. from hydrodynamical simulations. The radiation sources include an optically thick accretion disc and various central sources with flexible spectra and geometries. The code tracks the ‘photon packets’ produced by the sources in any given simulation as they traverse and interact with the wind. The code assumes radiative near-equilibrium, so the thermal and ionization state can be determined iteratively from these interactions. Once the physical properties in the wind have converged, sirocco can be used to generate synthetic spectra at a series of observer sightlines. Here, we describe the physical assumptions, operation, performance and limitations of the code. We validate it against tardis, cmfgen, and cloudy, finding good agreement, and present illustrative synthetic spectra from disc winds in cataclysmic variables, tidal disruption events, AGN, and X-ray binaries. sirocco is publicly available on GitHub, alongside its associated data, documentation and sample input files covering a wide range of astrophysical applications.</jats:p>Constraints on compact objects from the Dark Energy Survey five-year supernova sample
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2024) stae2614
Observability of dynamical tides in merging eccentric neutron star binaries
Physical Review D American Physical Society 110:10 (2024) 103043
Abstract:
While dynamical tides only become relevant during the last couple of orbits for circular inspirals, orbital eccentricity can increase their impact during earlier phases of the inspiral by exciting tidal oscillations at each close encounter. We investigate the effect of dynamical tides on the orbital evolution of eccentric neutron star binaries using post-Newtonian numerical simulations and construct an analytic stochastic model that reproduces the numerical results. Our study reveals a strong dependence of dynamical tides on the pericenter distance, with the fractional energy transferred to dynamical tides over that dissipated in gravitational waves (GWs) exceeding ∼1% at separations rp≲50 km for large eccentricities. We demonstrate that the effect of dynamical tides on orbital evolution can manifest as a phase shift in the GW signal. We show that the signal-to-noise ratio of the GW phase shift can reach the detectability threshold of 8 with a single advanced Laser Interferometer Gravitational Wave Observatory detector at design sensitivity for eccentric neutron star binaries at a distance of 40 Mpc. This requires a pericenter distance of rp0≲68 km (rp0≲76 km) at binary formation with eccentricity close to 1 for a reasonable tidal deformability and f-mode frequency of 500 and 1.73 kHz (700 and 1.61 kHz), respectively. The observation of the phase shift will enable measuring the f-mode frequency of neutron stars independently from their tidal deformability, providing significant insights into neutron star seismology and the properties of the equation of state. We also explore the potential of distinguishing between equal-radius and twin-star binaries, which could provide an opportunity to reveal strong first-order phase transitions in the nuclear equation of state.Anomaly Detection and RFI Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
ArXiv 2411.16556 (2024)