Wide-band simultaneous observations of pulsars: Disentangling dispersion measure and profile variations
Astronomy and Astrophysics 543 (2012)
Abstract:
Dispersion in the interstellar medium is a well known phenomenon that follows a simple relationship, which has been used to predict the time delay of dispersed radio pulses since the late 1960s. We performed wide-band simultaneous observations of four pulsars with LOFAR (at 40-190 MHz), the 76-m Lovell Telescope (at 1400 MHz) and the Effelsberg 100-m Telescope (at 8000 MHz) to test the accuracy of the dispersion law over a broad frequency range. In this paper we present the results of these observations which show that the dispersion law is accurate to better than 1 part in 105 across our observing band. We use this fact to constrain some of the properties of the interstellar medium along the line-of-sight and use the lack of any aberration or retardation effects to determine upper limits on emission heights in the pulsar magnetosphere. We also discuss the effect of pulse profile evolution on our observations, and the implications that it could have for precision pulsar timing projects such as the detection of gravitational waves with pulsar timing arrays. © 2012 ESO.First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: The case of Abell 2256
Astronomy and Astrophysics 543 (2012)
Abstract:
Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of-2.3 ± 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of-0.81 ± 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last ~0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region. © 2012 ESO.Parameter estimation for inspiraling eccentric compact binaries including pericenter precession
(2012)
Resonant Post-Newtonian Eccentricity Excitation in Hierarchical Three-body Systems
(2012)
Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies
(2012)