Statistical properties of the population of the Galactic centre filaments – II. The spacing between filaments
Monthly Notices of the Royal Astronomical Society Oxford University Press 515:2 (2022) 3059-3093
Abstract:
We carry out a population study of magnetized radio filaments in the Galactic centre using MeerKAT data by focusing on the spacing between the filaments that are grouped. The morphology of a sample of 43 groupings containing 174 magnetized radio filaments are presented. Many grouped filaments show harp-like, fragmented cometary tail-like, or loop-like structures in contrast to many straight filaments running mainly perpendicular to the Galactic plane. There are many striking examples of a single filament splitting into two prongs at a junction, suggestive of a flow of plasma along the filaments. Spatial variations in spectral index, brightness, bending, and sharpening along the filaments indicate that they are evolving on a 105-6-yr time-scale. The mean spacings between parallel filaments in a given grouping peaks at ∼16 arcsec. We argue by modeling that the filaments in a grouping all lie on the same plane and that the groupings are isotropically oriented in 3D space. One candidate for the origin of filamentation is interaction with an obstacle, which could be a compact radio source, before a filament splits and bends into multiple filaments. In this picture, the obstacle or sets the length scale of the separation between the filaments. Another possibility is synchrotron cooling instability occurring in cometary tails formed as a result of the interaction of cosmic ray driven Galactic centre outflow with obstacles such as stellar winds. In this picture, the mean spacing and the mean width of the filaments are expected to be a fraction of a parsec, consistent with observed spacing.A MeerKAT, e-MERLIN, HESS, and Swift search for persistent and transient emission associated with three localized FRBs
Monthly Notices of the Royal Astronomical Society Oxford University Press 515:1 (2022) 1365-1379
Abstract:
We report on a search for persistent radio emission from the one-off fast radio burst (FRB) 20190714A, as well as from two repeating FRBs, 20190711A and 20171019A, using the MeerKAT radio telescope. For FRB 20171019A, we also conducted simultaneous observations with the High-Energy Stereoscopic System (H.E.S.S.) in very high-energy gamma rays and searched for signals in the ultraviolet, optical, and X-ray bands. For this FRB, we obtain a UV flux upper limit of 1.39 × 10-16 erg, cm-2, s-1Å-1, X-ray limit of ~6.6 × 10-14~erg, cm-2, s-1 and a limit on the very high energy gamma-ray flux Φ (E> 120, GeV) < 1.7× 10-12, erg, cm-2, s-1. We obtain a radio upper limit of ∼15 μJy beam-1 for persistent emission at the locations of both FRBs 20190711A and 20171019A with MeerKAT. However, we detected an almost unresolved (ratio of integrated flux to peak flux is ∼1.7 beam) radio emission, where the synthesized beam size was ∼8 arcsec size with a peak brightness of ∼ 53, μJy beam-1 at MeerKAT and ∼ 86, μ Jy beam-1 at e-MERLIN, possibly associated with FRB 20190714A at z = 0.2365. This represents the first detection of persistent continuum radio emission potentially associated with a (as-yet) non-repeating FRB. If the association is confirmed, one of the strongest remaining distinction between repeaters and non-repeaters would no longer be applicable. A parallel search for repeat bursts from these FRBs revealed no new detections down to a fluence of 0.08 Jy ms for a 1 ms duration burst.Energy partition between Alfvenic and compressive fluctuations in magnetorotational turbulence with near-azimuthal mean magnetic field
JOURNAL OF PLASMA PHYSICS 88:3 (2022) ARTN 905880311
Abstract:
The theory of magnetohydrodynamic (MHD) turbulence predicts that Alfvénic and slow-mode-like compressive fluctuations are energetically decoupled at small scales in the inertial range. The partition of energy between these fluctuations determines the nature of dissipation, which, in many astrophysical systems, happens on scales where plasma is collisionless. However, when the magnetorotational instability (MRI) drives the turbulence, it is difficult to resolve numerically the scale at which both types of fluctuations start to be decoupled because the MRI energy injection occurs in a broad range of wavenumbers, and both types of fluctuations are usually expected to be coupled even at relatively small scales. In this study, we focus on collisional MRI turbulence threaded by a near-azimuthal mean magnetic field, which is naturally produced by the differential rotation of a disc. We show that, in such a case, the decoupling scales are reachable using a reduced MHD model that includes differential-rotation effects. In our reduced MHD model, the Alfvénic and compressive fluctuations are coupled only through the linear terms that are proportional to the angular velocity of the accretion disc. We numerically solve for the turbulence in this model and show that the Alfvénic and compressive fluctuations are decoupled at the small scales of our simulations as the nonlinear energy transfer dominates the linear coupling below the MRI-injection scale. In the decoupling scales, the energy flux of compressive fluctuations contained in the small scales is almost double that of Alfvénic fluctuations. Finally, we discuss the application of this result to prescriptions of ion-to-electron heating ratio in hot accretion flows.Discovery of a radio emitting neutron star with an ultra-long spin period of 76 seconds
(2022)
A Multiwavelength Study of GRS 1716-249 in Outburst: Constraints on Its System Parameters
The Astrophysical Journal American Astronomical Society 932:1 (2022) 38