Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
Physical Review Letters American Physical Society 133:21 (2024) 210801
Abstract:
The estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimizing the parameters encoding strategies with the aid of antiunitary symmetry is a novel and comprehensive approach. For demonstration, we propose two types of quantum statistical models exhibiting antiunitary symmetry in experiments. The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off and the precision is improved at least twice compared to conventional encoding strategies. Our work emphasizes the significant potential of antiunitary symmetry in addressing multiparameter estimation problems.Shedding light on the future: exploring quantum neural networks through optics
Advanced Quantum Technologies Wiley (2024) 2400074
Abstract:
At the dynamic nexus of artificial intelligence and quantum technology, quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning. This development is set to revolutionize the applications of quantum computing. This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics. The integration of quantum principles with classical neural network architectures is first examined to create QNNs. Some specific examples, such as the quantum perceptron, quantum convolutional neural networks, and quantum Boltzmann machines are discussed. Subsequently, the feasibility of implementing QNNs through photonics is analyzed. The key challenge here lies in achieving the required non-linear gates, and measurement-induced approaches, among others, seem promising. To unlock the computational potential of QNNs, addressing the challenge of scaling their complexity through quantum optics is crucial. Progress in controlling quantum states of light is continuously advancing the field. Additionally, it has been discovered that different QNN architectures can be unified through non-Gaussian operations. This insight will aid in better understanding and developing more complex QNN circuits.Experimental benchmarking of quantum state overlap estimation strategies with photonic systems
ArXiv 2406.0681 (2024)
Role of spatial coherence in diffractive optical neural networks.
Optics express 32:13 (2024) 22986-22997
Abstract:
Diffractive optical neural networks (DONNs) have emerged as a promising optical hardware platform for ultra-fast and energy-efficient signal processing for machine learning tasks, particularly in computer vision. Previous experimental demonstrations of DONNs have only been performed using coherent light. However, many real-world DONN applications require consideration of the spatial coherence properties of the optical signals. Here, we study the role of spatial coherence in DONN operation and performance. We propose a numerical approach to efficiently simulate DONNs under incoherent and partially coherent input illumination and discuss the corresponding computational complexity. As a demonstration, we train and evaluate simulated DONNs on the MNIST dataset of handwritten digits to process light with varying spatial coherence.Resource-Efficient Direct Characterization of General Density Matrix.
Physical review letters 132:3 (2024) 030201