Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122
Abstract:
The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.Learning heat transport kernels using a nonlocal heat transport theory-informed neural network
Physical Review Research American Physical Society (APS) 7:4 (2025) L042017
Abstract:
Isostructural phase transition of Fe2O3 under laser shock compression
Physical Review Letters American Physical Society 134:17 (2025) 176102
Abstract:
We present in situ x-ray diffraction and velocity measurements of Fe2O3 under laser shock compression at pressures between 38–122 GPa. None of the high-pressure phases reported by static compression studies were observed. Instead, we observed an isostructural phase transition from 𝛼−Fe2O3 to a new 𝛼′−Fe2O3 phase at a pressure of 50–62 GPa. The 𝛼′−Fe2O3 phase differs from 𝛼−Fe2O3 by an 11% volume drop and a different unit cell compressibility. We further observed a two-wave structure in the velocity profile, which can be related to an intermediate regime where both 𝛼 and 𝛼′ phases coexist. Density functional theory calculations with a Hubbard parameter indicate that the observed unit cell volume drop can be associated with a spin transition following a magnetic collapse.Methods for energy dispersive x-ray spectroscopy with photon-counting and deconvolution techniques
Journal of Applied Physics American Institute of Physics 137 (2025) 134501
Abstract:
Spectroscopic techniques are essential for studying material properties, but the small cross-sections of some methods may result in low signal-to-noise ratios (SNRs) in the collected spectra. In this article we present methods, based on combining Bragg spectroscopy with photon counting and deconvolution algorithms, which increase the SNRs, making the spectra better suited to further analysis. We aim to provide a comprehensive guide for constructing spectra from camera images. The efficacy of these methods is validated on synthetic and experimental data, the latter coming from the field of high-energy density (HED) science, where x-ray spectroscopy is essential for the understanding of materials under extreme thermodynamic conditions.Shock-driven amorphization and melting in Fe2O3
Physical Review B American Physical Society 111:2 (2025) 024209