Prospects for Multi-kJ Plasma Amplifiers

Optica Publishing Group (2016) fw5e.5

Authors:

James Sadler, Raoul Trines, Luke Ceurvorst, Naren Ratan, Muhammad Kasim, Robert Bingham, Peter Norreys

The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

Physics Reports Elsevier 601 (2015) 1-34

Authors:

Gianluca Gregori, Brian Reville, Francesco Miniati

Abstract:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields at cosmological shock waves. These arise during the collapse of protogalactic structures, resulting in the formation of high Mach number shocks in the intergalactic medium, which act as sources of vorticity in protogalaxies. The standard model for the origin of magnetic fields is via baroclinic generation from the resulting misaligned pressure and temperature gradients (the so-called Biermann battery process). While both experiment and numerical simulation have confirmed the occurrence of this mechanism at shocks, reconciling the resulting weak fields with present day observations is an un-solved problem, although it is generally accepted that turbulent motions of the weakly magnetised plasma plays a key role. Bridging the vast scale differences is a challenge both numerically and experimentally. A summary of novel laboratory experiments aimed at investigating additional processes that may shed light on these and other processes, such us turbulent amplification, resistive and collision-less plasma instabilities will be discussed in this review, particularly in relation to experiments using high power laser systems. The connection between laboratory shock waves and additional mechanisms, such as diffusive shock acceleration will be discussed. Finally, we will summarize the impact of laboratory investigation in furthering our understanding of plasma physics on super-galactic scales.

Compression of X-ray free electron laser pulses to attosecond duration

Scientific Reports Nature Publishing Group 5 (2015) 16755-16755

Authors:

James D Sadler, Ricky Nathvani, Piotr Oleśkiewicz, Luke A Ceurvorst, Naren Ratan, Muhammad F Kasim, Raoul MGM Trines, Robert Bingham, Peter Norreys

Abstract:

State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration.

Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences 112:27 (2015) 8211-8215

Authors:

Jena Meinecke, Petros Tzeferacos, Anthony R Bell, Robert Bingham, Rob J Clarke, Eugene M Churazov, Robert Crowston, Hugo Doyle, R Paul Drake, Rob Heathcote, Michel Koenig, Yasuhiro Kuramitsu, Carolyn C Kuranz, Daniel Lee, Michael J MacDonald, Chris D Murphy, Margaret M Notley, Hye-Sook Park, Alexander Pelka, Alessandra Ravasio, Brian Reville, Youichi Sakawa, Willow C Wan, Nigel C Woolsey, Roman Yurchak

Abstract:

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

Self-similar energetics in large clusters of galaxies.

Nature 523:7558 (2015) 59-62

Authors:

Francesco Miniati, Andrey Beresnyak

Abstract:

Massive galaxy clusters are filled with a hot, turbulent and magnetized intra-cluster medium. Still forming under the action of gravitational instability, they grow in mass by accretion of supersonic flows. These flows partially dissipate into heat through a complex network of large-scale shocks, while residual transonic (near-sonic) flows create giant turbulent eddies and cascades. Turbulence heats the intra-cluster medium and also amplifies magnetic energy by way of dynamo action. However, the pattern regulating the transformation of gravitational energy into kinetic, thermal, turbulent and magnetic energies remains unknown. Here we report that the energy components of the intra-cluster medium are ordered according to a permanent hierarchy, in which the ratio of thermal to turbulent to magnetic energy densities remains virtually unaltered throughout the cluster's history, despite evolution of each individual component and the drive towards equipartition of the turbulent dynamo. This result revolves around the approximately constant efficiency of turbulence generation from the gravitational energy that is freed during mass accretion, revealed by our computational model of cosmological structure formation. The permanent character of this hierarchy reflects yet another type of self-similarity in cosmology, while its structure, consistent with current data, encodes information about the efficiency of turbulent heating and dynamo action.