Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

8th International Conference on Inertial Fusion Sciences and Applications (IFSA 2013) 8–13 September 2013, Nara, Japan IOP Publishing Ltd. 688:1 (2016) 012071-012071

Authors:

T Morita, NL Kugland, W Wan, R Crowston, RP Drake, F Fiuza, Gianluca Gregori, C Huntington, T Ishikawa, M Koenig, C Kuranz, MC Levy, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quirós, BA Remington, B Reville, JS Ross, DD Ryutov, Y Sakawa, L Steele, H Takabe, Y Yamaura, N Woolsey, HS Park

Abstract:

We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.

THE X-RAY ZURICH ENVIRONMENTAL STUDY (X-ZENS). II. X-RAY OBSERVATIONS OF THE DIFFUSE INTRAGROUP MEDIUM IN GALAXY GROUPS

The Astrophysical Journal American Astronomical Society 819:1 (2016) 26

Authors:

Francesco Miniati, Alexis Finoguenov, John D Silverman, Marcella Carollo, Anna Cibinel, Simon J Lilly, Kevin Schawinski

ZENS. IV. SIMILAR MORPHOLOGICAL CHANGES ASSOCIATED WITH MASS QUENCHING AND ENVIRONMENT QUENCHING AND THE RELATIVE IMPORTANCE OF BULGE GROWTH VERSUS THE FADING OF DISKS*

The Astrophysical Journal American Astronomical Society 818:2 (2016) 180

Authors:

CM Carollo, A Cibinel, SJ Lilly, A Pipino, S Bonoli, A Finoguenov, F Miniati, P Norberg, JD Silverman

TURBULENT AMPLIFICATION AND STRUCTURE OF THE INTRACLUSTER MAGNETIC FIELD

The Astrophysical Journal American Astronomical Society 817:2 (2016) 127

Authors:

Andrey Beresnyak, Francesco Miniati

Dense plasma heating by crossing relativistic electron beams

Physical Review E American Physical Society 95:1 (2016) 013211

Authors:

Naren Ratan, Nathan J Sircombe, Luke A Ceurvorst, James Sadler, MF Kasim, J Holloway, Matthew C Levy, R Trines, R Bingham, Peter Norreys

Abstract:

Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.