Robustness of raman plasma amplifiers and their potential for attosecond pulse generation
High Energy Density Physics Elsevier 23 (2017) 212-216
Abstract:
Raman back-scatter from an under-dense plasma can be used to compress laser pulses, as shown by several previous experiments in the optical regime. A short seed pulse counter-propagates with a longer pump pulse and energy is transferred to the shorter pulse via stimulated Raman scattering. The robustness of the scheme to non-ideal plasma density conditions is demonstrated through particle-in-cell simulations. The scale invariance of the scheme ensures that compression of XUV pulses from a free electron laser is also possible, as demonstrated by further simulations. The output is as short as 300 as, with energy typical of fourth generation sources.Machine learning applied to proton radiography of high-energy-density plasmas
Physical Review E American Physical Society 95:4 (2017) 043305
Abstract:
Proton radiography is a technique extensively used to resolve magnetic field structures in high-energy-density plasmas, revealing a whole variety of interesting phenomena such as magnetic reconnection and collisionless shocks found in astrophysical systems. Existing methods of analyzing proton radiographs give mostly qualitative results or specific quantitative parameters, such as magnetic field strength, and recent work showed that the line-integrated transverse magnetic field can be reconstructed in specific regimes where many simplifying assumptions were needed. Using artificial neural networks, we demonstrate for the first time 3D reconstruction of magnetic fields in the nonlinear regime, an improvement over existing methods, which reconstruct only in 2D and in the linear regime. A proof of concept is presented here, with mean reconstruction errors of less than 5% even after introducing noise. We demonstrate that over the long term, this approach is more computationally efficient compared to other techniques. We also highlight the need for proton tomography because (i) certain field structures cannot be reconstructed from a single radiograph and (ii) errors can be further reduced when reconstruction is performed on radiographs generated by proton beams fired in different directions.Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo
Physics of Plasmas AIP Publishing 24:4 (2017) 041404
Abstract:
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.Quantitative shadowgraphy and proton radiography for large intensity modulations
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics American Physical Society (2017)
Abstract:
Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the non-linear nature of the process. Here, a novel method to retrieve quantitative information from shadowgrams, based on computational geometry, is presented for the first time. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and post-processing techniques. This adds a powerful new tool for research in various fields in engineering and physics for both techniques.Enabling radiative transfer on AMR grids in crash
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 467:2 (2017) 2458-2475