Optical polarization in mono and bilayer MoS 2
Current Applied Physics Elsevier 17:9 (2017) 1153-1157
Abstract:
Optical anisotropy in monolayer- and bilayer-MoS 2 was investigated by polarization resolved photoluminescence measurements. The photoluminescence of monolayer-MoS 2 is found to be partially polarized at 4.2 K and maintains this polarization characteristic up to room temperature, while the photoluminescence of bilayer-MoS 2 shows no obvious polarization. This polarization anisotropy is due to strain effects at the interface between the MoS 2 layer and the SiO 2 substrate, causing symmetry breaking of the MoS 2 charge distribution. Calculations using density functional theory of the electron density distribution of the monolayer- and bilayer-MoS 2 in the in-plane direction are also presented, giving support to our qualitative analysis.Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS2
Nanoscale Royal Society of Chemistry 9:30 (2017) 10647-10652
Abstract:
Due to its unique layer-number dependent electronic band structure and strong excitonic features, atomically thin MoS2 is an ideal 2D system where intriguing photoexcited-carrier-induced phenomena can be detected in excitonic luminescence. We perform micro-photoluminescence (PL) measurements and observe that the PL peak redshifts nonlinearly in mono- and bi-layer MoS2 as the excitation power is increased. The excited carrier-induced optical bandgap shrinkage is found to be proportional to n4/3, where n is the optically-induced free carrier density. The large exponent value of 4/3 is explicitly distinguished from a typical value of 1/3 in various semiconductor quantum well systems. The peculiar n4/3 dependent optical bandgap redshift may be due to the interplay between bandgap renormalization and reduced exciton binding energy.Proton tunneling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis
(2017)
Two-dimensional excitonic photoluminescence in graphene on a Cu surface
ACS Nano American Chemical Society 11:3 (2017) 3207-3212