Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot

APPLIED PHYSICS LETTERS 111:25 (2017) ARTN 251108

Authors:

CC Kocher, TJ Puchtler, JC Jarman, T Zhu, T Wang, L Nuttall, RA Oliver, RA Taylor

Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2.

Scientific reports 8:1 (2018) 5380-5380

Authors:

Y Park, CCS Chan, RA Taylor, Y Kim, N Kim, Y Jo, SW Lee, W Yang, H Im, G Lee

Abstract:

Photoluminescence measurements in mono- and bilayer-MoS2 on SiO2 were undertaken to determine the thermal effect of the MoS2/SiO2 interface on the optical bandgap. The energy and intensity of the photoluminescence from monolayer MoS2 were lower and weaker than those from bilayer MoS2 at low temperatures, whilst the opposite was true at high temperatures above 200 K. Density functional theory calculations suggest that the observed optical bandgap crossover is caused by a weaker substrate coupling to the bilayer than to the monolayer.

Temperature-independent emission in a [(CH3)3NPh]2MnBr4 single crystal analogous to thermally activated delayed fluorescence

Applied Materials Today Elsevier 44 (2025) 102763

Authors:

Mutibah Alanazi, Atanu Jana, Won Woong Choi, D ChangMo Yang, Robert A Taylor, Chang Woo Myung, Youngsin Park

Abstract:

We demonstrate a novel defect-mediated, thermally-activated emission mechanism in [(CH3)3NPh]2MnBr4 single crystals, driven by the coexistence of temperature-sensitive shallow traps and temperature-independent deep traps introduced by Br vacancies. Through comprehensive temperature-dependent photoluminescence (PL) and time-resolved PL measurements, combined with first-principles calculations, we reveal that the material exhibits exceptional thermal stability, retaining 67 % of its relative PL quantum yield at room temperature and achieving an absolute quantum yield of ∼38.9 % under optimal excitation conditions. The dual-component PL decay dynamics consist of a fast decay (∼hundreds of ps) governed by shallow traps and a long decay (∼350 μs) dominated by deep traps, creating an energy cascade that efficiently promotes radiative recombination while minimizing non-radiative losses. Our findings provide critical insights into defect-mediated, thermally-sensitive delayed emission mechanisms and establish [(CH3)3NPh]2MnBr4 as a lead-free, thermally stable material with high efficiency, making it an excellent candidate for next-generation optoelectronic applications, including solid-state lighting and temperature-sensitive devices.

Plasmon-Enhanced Photo-Luminescence Emission in Hybrid Metal–Perovskite Nanowires

Nanomaterials MDPI AG 15:8 (2025) 608-608

Authors:

Tintu Kuriakose, Hao Sha, Qingyu Wang, Gokhan Topcu, Xavier Romain, Shengfu Yang, Robert A Taylor

Abstract:

<jats:p>Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of noble metals to enhance the photon absorption efficiency. Here, we report plasmon-enhanced light emission in a hybrid nanowire device composed of perovskite semiconductor nanowires and silver nanoparticles formed using superfluid helium droplets. A cesium lead halide perovskite-based four-layer structure (CsPbBr3/PMMA/Ag/Si) effectively reduces the metal’s plasmonic losses while ensuring efficient surface plasmon–photon coupling at moderate power. Microphotoluminescence and time-resolved spectroscopy techniques are used to investigate the optical properties and emission dynamics of carriers and excitons within the hybrid device. Our results demonstrate an intensity enhancement factor of 29 compared with pure semiconductor structures at 4 K, along with enhanced carrier recombination dynamics due to plasmonic interactions between silver nanoparticles and perovskite nanowires. This work advances existing approaches for exciting photonic nanowires at low photon densities, with potential applications in optimizing single-photon excitations and emissions for quantum information processing.</jats:p>

Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy

Photonix SpringerOpen 6:1 (2025) 12

Authors:

San Kim, Tae-In Jeong, Robert A Taylor, Kwangseuk Kyhm, Young-Jin Kim, Seungchul Kim

Abstract:

High-resolution spectroscopy unveils the fundamental physics of quantum states, molecular dynamics, and energy transfers. Ideally, a higher spectral resolution over a broader bandwidth is the prerequisite, but traditional spectroscopic techniques can only partially fulfill this requirement even with a bulky system. Here we report that a multi-frequency acousto-optic phase modulation at a chip-scale of soft polydimethylsiloxane can readily support a 200-times higher 0.5-MHz spectral resolution for the frequency-comb-based spectroscopy, while co-located plasmonic nanostructures mediate the strong light-matter interaction. These results suggest the potential of polydimethylsiloxane acousto-optic phase modulation for cost-effective, compact, multifunctional chip-scale tools in diverse applications such as quantum spectroscopy, high-finesse cavity analysis, and surface plasmonic spectroscopy.