Photo-molecular high temperature superconductivity

Physical Review X American Physical Society 10 (2020) 031028

Authors:

M Buzzi, D Nicoletti, M Fechner, N Tancogne-Dejean, MA Sentef, A Georges, T Biesner, E Uykur, M Dressel, A Henderson, T Siegrist, JA Schlueter, K Miyagawa, K Kanoda, M-S Nam, Arzhang Ardavan, Jonathan Coulthard, Joseph Tindall, Frank Schlawin, Dieter Jaksch, Andrea Cavalleri

Abstract:

The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ−(BEDT−TTF)2 Cu[N(CN)2] Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T∗≃50K, far higher than the equilibrium transition temperature TC=12.5K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.

Quantum coherent spin-electric control in molecular nanomagnets

arXiv (2020)

Authors:

Arzhang Ardavan, Junjie Liu, Jakub Mrozek, Yan Duan, Aman Ullah, Jose Baldovi, Eugenio Coronado, Alejandro Gaita-Arino

Abstract:

Electrical control of spins at the nanoscale offers significant architectural advantages in spintronics, because electric fields can be confined over shorter length scales than magnetic fields. Thus, recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising, raising the viability of the quantum analogues of macroscopic magneto-electric devices. However, the E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings. Here we show that one path is to identify an energy scale in the spin spectrum that is associated with a structural degree of freedom with a significant electrical polarisability. We study an example of a molecular nanomagnet in which a small structural distortion establishes clock transitions (i.e. transitions whose energy is to first order independent of magnetic field) in the spin spectrum; the fact that this distortion is associated with an electric dipole on the molecule allows us to control the clock transition energy to an unprecedented degree. We demonstrate coherent electrical control of the quantum spin state and exploit it to manipulate independently the two magnetically-identical but inversion-related molecules in the unit cell of the crystal. Our findings pave the way for the use of molecular spins in quantum technologies and spintronics.

Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions

(2020)

Authors:

Junjie Liu, Jakub Mrozek, Aman Ullah, Yan Duan, José J Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Arzhang Ardavan

Spontaneous rotation of ferrimagnetism driven by antiferromagnetic spin canting

Physical Review Letters American Physical Society 124:12 (2020) 127201

Authors:

Anuradha Vibhakar, DD Khalyavin, P Manuel, Jieyi Liu, AA Belik, Roger Johnson

Abstract:

Spin-reorientation phase transitions that involve the rotation of a crystal's magnetization have been well characterized in distorted-perovskite oxides such as orthoferrites. In these systems spin reorientation occurs due to competing rare-earth and transition metal anisotropies coupled via f-d exchange. Here, we demonstrate an alternative paradigm for spin reorientation in distorted perovskites. We show that the R_{2}CuMnMn_{4}O_{12} (R=Y or Dy) triple A-site columnar-ordered quadruple perovskites have three ordered magnetic phases and up to two spin-reorientation phase transitions. Unlike the spin-reorientation phenomena in other distorted perovskites, these transitions are independent of rare-earth magnetism, but are instead driven by an instability towards antiferromagnetic spin canting likely originating in frustrated Heisenberg exchange interactions, and the competition between Dzyaloshinskii-Moriya and single-ion anisotropies.

Photo-molecular high temperature superconductivity

(2020)

Authors:

M Buzzi, D Nicoletti, M Fechner, N Tancogne-Dejean, MA Sentef, A Georges, M Dressel, A Henderson, T Siegrist, JA Schlueter, K Miyagawa, K Kanoda, M-S Nam, A Ardavan, J Coulthard, J Tindall, F Schlawin, D Jaksch, A Cavalleri