Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

Journal of the American Chemical Society 140:3 (2018) 1123-1130

Authors:

Z Hu, B-W Dong, Z Liu, J-J Liu, J Su, C Yu, J Xiong, D-E Shi, Y Wang, B-W Wang, A Ardavan, Z Shi, S-D Jiang, S Gao

Abstract:

An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M2@C79N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd2@C79N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (JGd-Rad = 350 ± 20 cm-1) has been unambiguously validated by magnetic susceptibility experiments. Gd2@C79N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

How to probe the spin contribution to momentum relaxation in topological insulators (vol 8, 2017)

NATURE COMMUNICATIONS 9 (2018) ARTN 729

Authors:

Moon-Sun Nam, Benjamin H Willams, Yulin Chen, Sonia Contera, Shuhua Yao, Minghui Lu, Yan-Feng Chen, Grigore A Timco, Christopher A Muryn, Richard EP Winpenny, Arzhang Ardavan

Endohedral metallofullerene as molecular high spin qubit: diverse Rabi cycles in Gd2@C79N

Journal of the American Chemical Society American Chemical Society 140:3 (2017) 1123-1130

Authors:

Z Hu, B-W Dong, Z Liu, Jun-Jie Liu, J Su, C Yu, J Xiong, D-E Shi, Y Wang, B-W Wang, Arzhang Ardavan, Z Shi, S-D Jiang, S Gao

Abstract:

An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M2@C79N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd2@C79N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (JGd-Rad = 350 ± 20 cm-1) has been unambiguously validated by magnetic susceptibility experiments. Gd2@C79N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

Strong coupling of microwave photons to antiferromagnetic fluctuations in an organic magnet

Physical Review Letters American Physical Society 119:14 (2017) 147701

Authors:

Matthias Mergenthaler, Junjie Liu, Jennifer Le Roy, Natalia Ares, Amber Thompson, Lapo Bogani, F Luis, Stephen Blundell, T Lancaster, Arzhang Ardavan, G Andrew D Briggs, Peter J Leek, Edward Laird

Abstract:

Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (cQED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multi-spin modes in organic crystals are suitable for cQED, offering a platform for their coherent manipulation. They also utilize the cQED architecture as a way to probe spin correlations at low temperature.

The spin resonance clock transition of the endohedral fullerene $^{15}\mathrm{N@C}_{60}$

Physical Review Letters American Physical Society 119:4 (2017) 140801

Authors:

RT Harding, S Zhou, J Zhou, T Lindvall, WK Myers, A Ardavan, GAD Briggs, Kyriakos Porfyrakis, EA Laird

Abstract:

The endohedral fullerene $^{15}\mathrm{N@C}_{60}$ has narrow electron paramagnetic resonance lines which have been proposed as the basis for a condensed-matter portable atomic clock. We measure the low-frequency spectrum of this molecule, identifying and characterizing a clock transition at which the frequency becomes insensitive to magnetic field. We infer a linewidth at the clock field of 100 kHz. Using experimental data, we are able to place a bound on the clock's projected frequency stability. We discuss ways to improve the frequency stability to be competitive with existing miniature clocks.