Symmetries and conservation laws in quantum trajectories: Dissipative freezing
Physical Review A American Physical Society 100:4 (2019) 042113
Abstract:
In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposition involving several of these sectors, each individual stochastic trajectory will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a single sector from an initial superposition entails a breakdown of this conservation law at the level of individual realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative phase transition. We discuss our results with a simple, realistic model of squeezed superradiance.Cavity-mediated unconventional pairing in ultracold fermionic atoms
Physical Review Letters American Physical Society 123 (2019) 133601
Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton.
Physical review. E 100:2-1 (2019) 020103
Abstract:
We study the statistical properties of the long-time dynamics of the rule 54 reversible cellular automaton (CA), driven stochastically at its boundaries. This CA can be considered as a discrete-time and deterministic version of the Fredrickson-Andersen kinetically constrained model (KCM). By means of a matrix product ansatz, we compute the exact large deviation cumulant generating functions for a wide range of time-extensive observables of the dynamics, together with their associated rate functions and conditioned long-time distributions over configurations. We show that for all instances of boundary driving the CA dynamics occurs at the point of phase coexistence between competing active and inactive dynamical phases, similar to what happens in more standard KCMs. We also find the exact finite size scaling behavior of these trajectory transitions, and provide the explicit "Doob-transformed" dynamics that optimally realizes rare dynamical events.Heating-Induced Long-Range η Pairing in the Hubbard Model
Physical Review Letters American Physical Society 123:3 (2019) 030603
Abstract:
We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady states with long-range correlations between η pairs. We induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal η correlations. These correlations were first recognized in the superconducting eigenstates described in Yang’s seminal Letter [Phys. Rev. Lett. 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism.Mott polaritons in cavity-coupled quantum materials
New Journal of Physics IOP Publishing 21 (2019) 073066