Non-stationarity and dissipative time crystals: Spectral properties and finite-size effects

New Journal of Physics IOP Publishing 22:August 2020 (2020) 085007

Authors:

Cameron Booker, Berislav Buca, Dieter Jaksch

Abstract:

We discuss the emergence of non-stationarity in open quantum many-body systems. This leads us to the definition of dissipative time crystals which display experimentally observable, persistent, time-periodic oscillations induced by noisy contact with an environment. We use the Loschmidt echo and local observables to indicate the presence of a finite sized dissipative time crystal. Starting from the closed Hubbard model we then provide examples of dissipation mechanisms that yield experimentally observable quantum periodic dynamics and allow analysis of the emergence of finite sized dissipative time crystals. For a disordered Hubbard model including two-particle loss and gain we find a dark Hamiltonian driving oscillations between GHZ states in the long-time limit. Finally, we discuss how the presented examples could be experimentally realized.

Photo-molecular high temperature superconductivity

Physical Review X American Physical Society 10 (2020) 031028

Authors:

M Buzzi, D Nicoletti, M Fechner, N Tancogne-Dejean, MA Sentef, A Georges, T Biesner, E Uykur, M Dressel, A Henderson, T Siegrist, JA Schlueter, K Miyagawa, K Kanoda, M-S Nam, Arzhang Ardavan, Jonathan Coulthard, Joseph Tindall, Frank Schlawin, Dieter Jaksch, Andrea Cavalleri

Abstract:

The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ−(BEDT−TTF)2 Cu[N(CN)2] Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T∗≃50K, far higher than the equilibrium transition temperature TC=12.5K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.

Photoinduced electron pairing in a driven cavity

Physical Review Letters American Physical Society 125:5 (2020) 053602

Authors:

Hongmin Gao, Frank Schlawin, Michele Buzzi, Andrea Cavalleri, Dieter Jaksch

Abstract:

We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red(blue)-detuned from the cavity yields attractive(repulsive) interactions, whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laserinduced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3.

Isolated Heisenberg magnet as a quantum time crystal

Physical Review B American Physical Society 102:4 (2020) 041117(R)

Authors:

Marko Medenjak, Berislav Buca, Dieter Jaksch

Abstract:

We demonstrate analytically and numerically that the paradigmatic model of quantum magnetism, the Heisenberg XXZ spin chain, does not equilibrate. It constitutes an example of persistent nonstationarity in a quantum many-body system that does not rely on external driving or coupling to an environment. We trace this phenomenon to the existence of extensive dynamical symmetries. We discuss how the ensuing persistent oscillations that seemingly violate one of the most fundamental laws of physics could be observed experimentally.

Minimum hardware requirements for hybrid quantum-classical DMFT

Quantum Science and Technology IOP Science 5:3 (2020) 34015

Authors:

B Jaderberg, A Agarwal, K Leonhardt, M Kiffner, D Jaksch

Abstract:

We numerically emulate noisy intermediate-scale quantum (NISQ) devices and determine the minimal hardware requirements for two-site hybrid quantum-classical dynamical mean-field theory (DMFT). We develop a circuit recompilation algorithm which significantly reduces the number of quantum gates of the DMFT algorithm and find that the quantum-classical algorithm converges if the two-qubit gate fidelities are larger than 99%. The converged results agree with the exact solution within 10%, and perfect agreement within noise-induced error margins can be obtained for two-qubit gate fidelities exceeding 99.9%. By comparison, the quantum-classical algorithm without circuit recompilation requires a two-qubit gate fidelity of at least 99.999% to achieve perfect agreement with the exact solution. We thus find quantum-classical DMFT calculations can be run on the next generation of NISQ devices if combined with the recompilation techniques developed in this work.