Enhancement of superexchange pairing in the periodically driven Hubbard model
Physical Review B American Physical Society 96:8 (2017) 085104
Abstract:
Recent experiments performed on cuprates and alkali-doped fullerides have demonstrated that key signatures of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories have been proposed, but these either consider specific features, such as competing instabilities, or focus on conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in strongly correlated systems. Focusing on the strongly repulsive limit of the doped Hubbard model, we investigate in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce electronic hopping, while simultaneously sustaining superexchange interactions and pair hopping via driving-induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from zero- and finite-temperature initial states, and we show that enhanced singlet-pair correlations emerge quickly and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically induced superconductivity in some strongly correlated quantum materials.Ultra-fast control of magnetic relaxation in a periodically driven Hubbard model
Annalen der Physik Wiley (2017)
Abstract:
Motivated by cold atom and ultra-fast pump-probe experiments we study the melting of long-range antiferromagnetic order of a perfect Néel state in a periodically driven repulsive Hubbard model. The dynamics is calculated for a Bethe lattice in infinite dimensions with non-equilibrium dynamical mean-field theory. In the absence of driving melting proceeds differently depending on the quench of the interactions to hopping ratio math formula from the atomic limit. For math formula decay occurs due to mobile charge-excitations transferring energy to the spin sector, while for math formula it is governed by the dynamics of residual quasi-particles. Here we explore the rich effects that strong periodic driving has on this relaxation process spanning three frequency ω regimes: (i) high-frequency math formula, (ii) resonant math formula with integer l, and (iii) in-gap math formula away from resonance. In case (i) we can quickly switch the decay from quasi-particle to charge-excitation mechanism through the suppression of ν0. For (ii) the interaction can be engineered, even allowing an effective math formula regime to be reached, giving the reverse switch from a charge-excitation to quasi-particle decay mechanism. For (iii) the exchange interaction can be controlled with little effect on the decay. By combining these regimes we show how periodic driving could be a potential pathway for controlling magnetism in antiferromagnetic materials. Finally, our numerical results demonstrate the accuracy and applicability of matrix product state techniques to the Hamiltonian DMFT impurity problem subjected to strong periodic driving.Charge and spin current statistics of the open Hubbard model with weak coupling to the environment.
Physical review. E 95:5-1 (2017) 052141-052141
Abstract:
Based on generalization and extension of our previous work [Phys. Rev. Lett. 112, 067201 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.067201] to multiple independent Markovian baths we will compute the charge and spin current statistics of the open Hubbard model with weak system-bath coupling up to next-to-leading order in the coupling parameter. Only the next-to-leading and higher orders depend on the Hubbard interaction parameter. The physical results are related to those for the XXZ model in the analogous setup implying a certain universality, which potentially holds in this class of nonequilibrium models.Topological spin models in Rydberg lattices
Applied Physics B Springer Verlag 123:46 (2017)
Abstract:
We show that resonant dipole–dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole–dipole coupling between np and ns Rydberg states and derive an effective spin-1/2 Hamiltonian for the np excitations. By breaking time-reversal symmetry via external fields, we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is C=1C=1 or C=2C=2 .Out-of-Equilibrium Physics in Driven Dissipative Photonic Resonator Arrays
Chapter in Quantum Simulations with Photons and Polaritons, Springer Nature (2017) 43-70