Cosmological constraints from the angular power spectrum and bispectrum of luminous red galaxies and CMB lensing

(2025)

Authors:

Francesco Verdiani, Lea Harscouet, Matteo Zennaro, David Alonso, Boryana Hadzhiyska

The First Radio-bright Off-nuclear Tidal Disruption Event AT 2024tvd Reveals the Fastest-evolving Double-peaked Radio Emission

The Astrophysical Journal Letters American Astronomical Society 992:2 (2025) l18

Authors:

Itai Sfaradi, Raffaella Margutti, Ryan Chornock, Kate D Alexander, Brian D Metzger, Paz Beniamini, Rodolfo Barniol Duran, Yuhan Yao, Assaf Horesh, Wael Farah, Edo Berger, AJ Nayana, Yvette Cendes, Tarraneh Eftekhari, Rob Fender, Noah Franz, Dave A Green, Erica Hammerstein, Wenbin Lu, Eli Wiston, Yirmi Bernstein, Joe Bright, Collin T Christy, Luigi F Cruz, David R DeBoer, Walter W Golay, Adelle J Goodwin, Mark Gurwell, Garrett K Keating, Tanmoy Laskar, James CA Miller-Jones, Alexander W Pollak, Ramprasad Rao, Andrew Siemion, Sofia Z Sheikh, Nadav Shoval, Sjoert van Velzen

Abstract:

We present the first multiepoch broadband radio and millimeter monitoring of an off-nuclear tidal disruption event (TDE) using the Very Large Array, the Atacama Large Millimeter/submillimeter Array, the Allen Telescope Array, the Arcminute Microkelvin Imager Large Array, and the Submillimeter Array. The off-nuclear TDE AT 2024tvd exhibits double-peaked radio light curves and the fastest-evolving radio emission observed from a TDE to date. With respect to the optical discovery date, the first radio flare rises faster than Fν ∼ t9 at Δt = 88–131 days and then decays as fast as Fν ∼ t−6. The emergence of a second radio flare is observed at Δt ≈ 194 days with an initial fast rise of Fν ∼ t18 and an optically thin decline of Fν ∼ t−12. We interpret these observations in the context of a self-absorbed and free–free absorbed synchrotron spectrum, while accounting for both synchrotron and inverse Compton cooling. We find that a single prompt outflow cannot easily explain these observations and that it is likely that either there is only one outflow that was launched at Δt ∼ 80 days or there are two distinct outflows, with the second launched at Δt ∼ 170–190 days. The nature of these outflows, whether sub-, mildly, or ultrarelativistic, is still unclear, and we explore these different scenarios. Finally, we find a temporal coincidence between the launch time of the first radio-emitting outflow and the onset of a power-law component in the X-ray spectrum, attributed to inverse Compton scattering of thermal photons.

Limits on the ejecta mass during the search for kilonovae associated with neutron star-black hole mergers: A case study of S230518h, GW230529, S230627c and the low-significance candidate S240422ed

Physical Review D American Physical Society (APS) 112:8 (2025) 083002

Authors:

M Pillas, S Antier, K Ackley, T Ahumada, D Akl, L de Almeida, S Anand, C Andrade, I Andreoni, KA Bostroem, M Bulla, E Burns, T Cabrera, S Chang, H Choi, B O’Connor, MW Coughlin, W Corradi, AR Gibbs, T Dietrich, D Dornic, J-G Ducoin, P-A Duverne, H-B Eggenstein, M Freeberg, M Dyer, M Fausnaugh, Wen-fai Fong, F Foucart, D Frostig, N Guessoum, Vaidehi Gupta, P Hello, G Hosseinzadeh, L Hu, T Hussenot-Desenonges, M Im, R Jayaraman, M Jeong, V Karambelkar, M Kasliwal, S Kim, CD Kilpatrick, N Kochiashvili, S Karpov, K Kunnumkai, M Lamoureux, CU Lee, N Lourie, J Lyman, M Mašek, F Magnani, G Mo, M Molham, AH Nitz, M Nicholl, F Navarete, K Noysena, D O’Neill, GSH Paek, A Palmese, R Poggiani, T Pradier, O Pyshna, Y Rajabov, JC Rastinejad, DJ Sand, P Shawhan, M Shrestha, R Simcoe, SJ Smartt, D Steeghs, R Stein, HF Stevance, A Takey, M Sun, A Toivonen, D Turpin, K Ulaczyk, A Wold, T Wouters

Abstract:

Neutron star-black hole (NSBH) mergers, detectable via their gravitational-wave (GW) emission, are expected to produce kilonovae (KNe). Four NSBH candidates have been identified and followed-up by more than fifty instruments since the start of the fourth GW observing run (O4), in May 2023, up to July 2024; however, no confirmed associated KN has been detected. This study evaluates ejecta properties from multimessenger observations to understand the absence of detectable KN: we use GW public information and joint observations taken from 05.2023 to 07.2024 (LVK, ATLAS, DECam, GECKO, GOTO, GRANDMA, SAGUARO, TESS, WINTER, ZTF). First, our analysis on follow-up observation strategies shows that, on average, more than 50% of the simulated KNe associated with NSBH mergers reach their peak luminosity around one day after merger in the g, r, i- bands, which is not necessarily covered for each NSBH GW candidate. We also analyze the trade-off between observation efficiency and the intrinsic properties of the KN emission, to understand the impact on how these constraints affect our ability to detect the KN, and underlying ejecta properties for each GW candidate. In particular, we can only confirm the kilonova was not missed for 1% of the GW230529 and S230627c sky localization region, given the large sky localization error of GW230529 and the large distance for S230627c and, their respective KN faint luminosities. More constraining, for S230518h, we infer the dynamical ejecta and postmerger disk wind ejecta mdyn,mwind<0.03M⊙ and the viewing angle θ>25°. Similarly, the nonastrophysical origin of S240422ed is likely further confirmed by the fact that we would have detected even a faint KN at the time and presumed distance of the S240422ed event candidate, within a minimum 45% credible region of the sky area, that can be larger depending on the KN scenario.

Infrared spectral signatures of light r-process elements in kilonovae

(2025)

Authors:

Anders Jerkstrand, Quentin Pognan, Smaranika Banerjee, Nicholas Sterling, Jon Grumer, Niamh Ferguson, Keith Butler, James Gillanders, Stephen Smartt, Kyohei Kawaguchi, Blanka Vilagos

Probing the Higgs boson CP properties in vector-boson fusion production in the H → τ + τ − channel with the ATLAS detector

Journal of High Energy Physics Springer 2025:10 (2025) 92

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, A Aggarwal

Abstract:

The CP properties of the Higgs boson are studied in the vector-boson fusion production mode. The analysis exploits the decay mode of the Higgs boson into two τ-leptons using 140 fb−1 of proton-proton collision data at s=13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Results are obtained using the Optimal Observable method. CP-violating interactions between the Higgs boson and electroweak gauge bosons are considered in the effective field theory framework, with the interaction strength described in the HISZ basis by d~, and in the Warsaw basis by cHW~, cHB~, and cHW~B. No deviations relative to the Standard Model are observed, and limits are obtained on the strength parameters. The d~ parameter is constrained to the interval [−0.012, 0.044] at the 95% confidence level while cHW~ is constrained to [−0.24, 0.83], when considering both linear and quadratic effects of physics beyond the Standard Model.