Textual interpretation of transient image classifications from large language models
Nature Astronomy Nature Research (2025) 1-10
Abstract:
Modern astronomical surveys deliver immense volumes of transient detections, yet distinguishing real astrophysical signals (for example, explosive events) from bogus imaging artefacts remains a challenge. Convolutional neural networks are effectively used for real versus bogus classification; however, their reliance on opaque latent representations hinders interpretability. Here we show that large language models (LLMs) can approach the performance level of a convolutional neural network on three optical transient survey datasets (Pan-STARRS, MeerLICHT and ATLAS) while simultaneously producing direct, human-readable descriptions for every candidate. Using only 15 examples and concise instructions, Google’s LLM, Gemini, achieves a 93% average accuracy across datasets that span a range of resolution and pixel scales. We also show that a second LLM can assess the coherence of the output of the first model, enabling iterative refinement by identifying problematic cases. This framework allows users to define the desired classification behaviour through natural language and examples, bypassing traditional training pipelines. Furthermore, by generating textual descriptions of observed features, LLMs enable users to query classifications as if navigating an annotated catalogue, rather than deciphering abstract latent spaces. As next-generation telescopes and surveys further increase the amount of data available, LLM-based classification could help bridge the gap between automated detection and transparent, human-level understanding.A measurement of the high-mass τ τ ¯ production cross-section at s = 13 TeV with the ATLAS detector and constraints on new particles and couplings
Journal of High Energy Physics Springer 2025:10 (2025) 54
Abstract:
The production cross-section of high-mass τ-lepton pairs is measured as a function of the dilepton visible invariant mass, using 140 fb−1 of s=13 TeV proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider. The measurement agrees with the predictions of the Standard Model. A fit to the invariant mass distribution is performed as a function of b-jet multiplicity, to constrain the non-resonant production of new particles described by an effective field theory or in models containing leptoquarks or Z′ bosons that couple preferentially to third-generation fermions. The constraints on new particles improve on previous results, and the constraints on effective operators include those affecting the anomalous magnetic moment of the τ-lepton.Robust cosmic shear with small-scale nulling
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 017
Abstract:
Standard cosmological weak lensing analyses using cosmic shear are inevitably sensitive to small-scale, non-linear clustering from low-redshift structures. The need to adequately model the clustering of matter on this non-linear regime, accounting for both gravitational and baryonic effects, adds significant uncertainty to weak lensing studies, particularly in the context of near-future Stage-IV datasets. In this paper, inspired by previous work on so-called “nulling” techniques, we present a general method that selects the linear combinations of a given tomographic cosmic shear dataset that are least sensitive to small-scale non-linearities, by essentially suppressing the contribution from low-redshift structures. We apply this method to the latest public cosmic shear data from the Dark Energy Survey, DES-Y3, that corresponds to 3 years of observation, and show: a) that a large fraction of the signal is dominated by the single mode that is most affected by non-linear scales, and b) that removing this mode leads to a ∼ 1σ upwards shift in the preferred value of S 8 ≡ σ 8√(ΩM/0.3), alleviating the tension with current CMB data. However, the removal of the most contaminated mode also results in a significant increase in the statistical uncertainties. Taking this into account, we find this shift to be compatible with a random fluctuation caused by removing this most-contaminated mode at the ∼ 1.4σ level. We also show that this technique may be used by future Stage-IV surveys to mitigate the sensitivity of the final constraints to baryonic effects, trading precision for robustness.The Simons Observatory: Quantifying the impact of beam chromaticity on large-scale B -mode science
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 005
Abstract:
The Simons Observatory (SO) Small Aperture Telescopes (SATs) will observe the Cosmic Microwave Background (CMB) temperature and polarization at six frequency bands. Within these bands, the angular response of the telescope (beam) is convolved with the instrument's spectral response (commonly called bandpass) and the signal from the sky, which leads to the band-averaged telescope beam response, which is sampled and digitized. The spectral properties of the band-averaged beam depend on the natural variation of the beam within the band, referred to as beam chromaticity. In this paper, we quantify the impact of the interplay of beam chromaticity and intrinsic frequency scaling from the various components that dominate the polarized sky emission on the tensor-to-scalar ratio, r, and foreground parameters. We do so by employing a parametric power-spectrum-based foreground component separation algorithm, namely BBPower, to which we provide beam-convolved time domain simulations performed with the beamconv software while assuming an idealized version of the SO SAT optics. We find a small, 0.02σ, bias on r, due to beam chromaticity, which seems to mostly impact the dust spatial parameters, causing a maximum 0.77σ bias on the dust B-mode spectra amplitude, Ad , when employing Gaussian foreground simulations. However, we find all parameter biases to be smaller than 1σ at all times, independently of the foreground model. This includes the case where we introduce additional uncertainty on the bandpass shape, which accounts for approximately half of the total allowed gain uncertainty, as estimated in previous work for the SO SATs.Angular correlation functions of bright Lyman-break galaxies at 3 ≲ z ≲ 5
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1651