MeerKAT discovery of radio emission from the Vela X-1 bow shock

Monthly Notices of the Royal Astronomical Society Oxford University Press 510:1 (2021) 515-530

Authors:

J van den Eijnden, I Heywood, R Fender, S Mohamed, Gr Sivakoff, P Saikia, Td Russell, S Motta, Jca Miller-Jones, Pa Woudt

Abstract:

Vela X-1 is a runaway X-ray binary system hosting a massive donor star, whose strong stellar wind creates a bow shock as it interacts with the interstellar medium (ISM). This bow shock has previously been detected in H α and infrared, but, similar to all but one bow shock from a massive runaway star (BD+43o3654), has escaped detection in other wavebands. We report on the discovery of 1.3 GHz radio emission from the Vela X-1 bow shock with the MeerKAT telescope. The MeerKAT observations reveal how the radio emission closely traces the H α line emission, both in the bow shock and in the larger scale diffuse structures known from existing H α surveys. The Vela X-1 bow shock is the first stellar-wind-driven radio bow shock detected around an X-ray binary. In the absence of a radio spectral index measurement, we explore other avenues to constrain the radio emission mechanism. We find that thermal/free-free emission can account for the radio and H α properties, for a combination of electron temperature and density consistent with earlier estimates of ISM density and the shock enhancement. In this explanation, the presence of a local ISM overdensity is essential for the detection of radio emission. Alternatively, we consider a non-thermal/synchrotron scenario, evaluating the magnetic field and broad-band spectrum of the shock. However, we find that exceptionally high fractions (13 per cent) of the kinetic wind power would need to be injected into the relativistic electron population to explain the radio emission. Assuming lower fractions implies a hybrid scenario, dominated by free-free radio emission. Finally, we speculate about the detectability of radio bow shocks and whether it requires exceptional ISM or stellar wind properties.

MeerKAT discovery of radio emission from the Vela X-1 bow shock

(2021)

Authors:

J van den Eijnden, I Heywood, R Fender, S Mohamed, GR Sivakoff, P Saikia, TD Russell, S Motta, JCA Miller-Jones, PA Woudt

SN 2020kyg and the rates of faint Iax Supernovae from ATLAS

(2021)

Authors:

Shubham Srivastav, SJ Smartt, ME Huber, KC Chambers, CR Angus, T-W Chen, FP Callan, JH Gillanders, OR McBrien, SA Sim, M Fulton, J Hjorth, KW Smith, DR Young, K Auchettl, JP Anderson, G Pignata, TJL de Boer, C-C Lin, EA Magnier

Strong Lensing Science Collaboration input to the on-sky commissioning of the Vera Rubin Observatory

ArXiv 2111.09216 (2021)

Authors:

Graham P Smith, Timo Anguita, Simon Birrer, Paul L Schechter, Aprajita Verma, Tom Collett, Frederic Courbin, Brenda Frye, Raphael Gavazzi, Cameron Lemon, Anupreeta More, Dan Ryczanowski, Sherry H Suyu

Non-radial neutrino emission upon black hole formation in core collapse supernovae

Physical Review D American Physical Society 104 (2021) 104030

Authors:

Jia-Shian Wang, Jeff Tseng, Samuel Gullin, Evan P O'Connor

Abstract:

Black hole formation in a core-collapse supernova is expected to lead to a distinctive, abrupt drop in neutrino luminosity due to the engulfment of the main neutrino-producing regions as well as the strong gravitational redshift of those remaining neutrinos which do escape. Previous analyses of the shape of the cutoff have focused on specific trajectories or simplified models of bulk neutrino transport. In this article, we integrate over simple null geodesics to investigate potential effects on the cutoff profile of including all neutrino emission angles from a collapsing surface in the Schwarzschild metric, and from a contracting equatorial mass ring in the Kerr metric. We find that the nonradial geodesics contribute to a softening of the cutoff in both cases. In addition, extreme rotation introduces significant changes to the shape of the tail which may be observable in future neutrino detectors, or combinations of detectors.