Asteroid electrostatic instrumentation and modelling
Journal of Physics: Conference Series 301:1 (2011)
Abstract:
Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.HARMONI: A first light spectrograph for the E-ELT
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
We describe the current status of the HARMONI instrument design, which will form the basis for the first-light integral field spectrograph on the European Extremely Large Telescope. We review the phase A design, and highlight current on-going work to evolve the design in-line changing telescope requirements and lessons learned during the Phase A work. We also outline the key science drivers for the instrument, and describe briefly the requirements for the laser tomographic adaptive optics system which is expected to feed HARMONI.Lunar regolith thermal gradients and emission spectra: Modeling and validation
Journal of Geophysical Research: Planets 116:12 (2011)
Abstract:
The retrieval of surface composition from IR measurements of airless bodies requires a model capable of computing the significant thermal gradients present in the top few hundred microns of the regolith. In this study we introduce a model which reproduces most of the features found in controlled experiments made in the simulated lunar environment emission chamber (SLEEC). Although the model presented here is forced by a lower boundary held at a fixed temperature, we conclude that a similar algorithm driven by solar illumination may be used as a forward model to retrieve composition, particle size and effective thermal conductivity from IR measurements of airless bodies. Copyright 2011 by the American Geophysical Union.Testing the limit of AO for ELTs: Diffraction limited astronomy in the red optical
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
Many of the proposed science cases for extremely large telescopes (ELT) are only possible because of the unprecedented sensitivity and spatial resolution due to advanced, e.g. tomographic and multi conjugate, adaptive optic (AO) systems. Current AO systems on 8-10 m telescopes work best at wavelengths longward of 1 μm with Strehl ratios ≥ 15%. At red-optical wavelengths, e.g. in the I band (0.8 μm), the Strehl ratio is at best a few percent. The AO point spread function (PSF) typically has a diffraction-limited core superimposed on the seeing halo, however, for a 5% Strehl ratio the core has a very low intensity above the seeing halo. At an ELT, due to a 3-4 times higher angular resolution, the diffraction limited PSF core of only 5% Strehl ratio stands more prominently atop the shallow seeing halo leading to almost diffraction limited image quality even at low Strehl ratios. Prominent ELT science cases that use the Calcium triplet can exploit this gain in spatial resolution in the red-optical: stellar populations in dense environments or crowded fields; and the case of intermediate mass black holes in nuclear and globular stellar clusters, as well as (super-) massive black holes in galaxies.High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data
Journal of Geophysical Research American Geophysical Union (AGU) 116:E3 (2011)