Global variations in water vapor and saturation state throughout the Mars year 34 Dusty season
Journal of Geophysical Research: Planets Wiley 127:10 (2022) e2022JE007203
Abstract:
To understand the evolving martian water cycle, a global perspective of the combined vertical and horizontal distribution of water is needed in relation to supersaturation and water loss and how it varies spatially and temporally. The global vertical water vapor distribution is investigated through an analysis that unifies water, temperature and dust retrievals from several instruments on multiple spacecraft throughout Mars Year (MY) 34 with a global circulation model. During the dusty season of MY 34, northern polar latitudes are largely absent of water vapor below 20 km with variations above this altitude due to transport from mid-latitudes during a global dust storm, the downwelling branch of circulation during perihelion season and the intense MY 34 southern summer regional dust storm. Evidence is found of supersaturated water vapor breaking into the northern winter polar vortex. Supersaturation above around 60 km is found for most of the time period, with lower altitudes showing more diurnal variation in the saturation state of the atmosphere. Discrete layers of supersaturated water are found across all latitudes. The global dust storm and southern summer regional dust storm forced water vapor at all latitudes in a supersaturated state to 60-90 km where it is more likely to escape from the atmosphere. The reanalysis data set provides a constrained global perspective of the water cycle in which to investigate the horizontal and vertical transport of water throughout the atmosphere, of critical importance to understand how water is exchanged between different reservoirs and escapes the atmosphere.Thermal structure of the middle and upper atmosphere of Mars From ACS/TGO CO2 spectroscopy
Journal of Geophysical Research: Planets American Geophysical Union 127:10 (2022)
Abstract:
Temperature and density in the upper Martian atmosphere, above ∼100 km, are key diagnostic parameters to study processes of the species' escape, investigate the impact of solar activity, model the atmospheric circulation, and plan spacecraft descent or aerobraking maneuvers. In this paper, we report vertical profiling of carbon dioxide (CO2) density and temperature from the Atmospheric Chemistry Suite (ACS) solar occultations onboard the ExoMars Trace Gas Orbiter. A strong CO2 absorption band near 2.7 μm observed by the middle infrared spectrometric channel (ACS MIR) allows the retrieval of the atmospheric thermal structure in an unprecedentedly large altitude range, from 20 to 180 km. We present the latitudinal and seasonal climatology of the thermal structure for 1.5 Martian years (MYs), from the middle of MY 34 to the end of MY 35. The results show the variability of distinct atmospheric layers, such as a mesopause (derived from 70 to 145 km) and homopause, changing from 90 to 100 km at aphelion to 120–130 km at perihelion. Some short-term homopause fluctuations are also observed depending on the dust activity.Climatology of the CO vertical distribution on Mars based on ACS TGO measurements
Journal of Geophysical Research: Planets American Geophysical Union 127:9 (2022) e2022JE007195
Abstract:
Carbon monoxide is a non-condensable gas in the Martian atmosphere produced by the photolysis of CO2. Its abundance responds to the condensation and sublimation of CO2 from the polar caps, resulting in seasonal variations of the CO mixing ratio. ACS onboard the ExoMars Trace Gas Orbiter have measured CO in infrared bands by solar occultation. Here we provide the first long-term monitoring of the CO vertical distribution at the altitude range from 0 to 80 km for 1.5 Martian years from Ls = 163° of MY34 to the end of MY35. We obtained a mean CO mixing ratio of ∼960 ppmv at latitudes from 45°S to 45°N and altitudes below 40 km, mostly consistent with previous observations. We found a strong enrichment of CO near the surface at Ls = 100–200° in high southern latitudes with a layer of 3,000–4,000 ppmv, corresponding to local depletion of CO2. At equinoxes we found an increase of the CO mixing ratio above 50 km to 3,000–4,000 ppmv at high latitudes of both hemispheres explained by the downwelling flux of the Hadley circulation on Mars, which drags the CO enriched air. General circulation models tend to overestimate the intensity of this process, bringing too much CO. The observed minimum of CO in the high and mid-latitudes southern summer atmosphere amounts to 700–750 ppmv, agreeing with nadir measurements. During the global dust storm of MY34, when the H2O abundance peaks, we see less CO than during the calm MY35, suggesting an impact of HOx chemistry on the CO abundance.A novel radiometer for clouds investigations in future Venus aerobot missions
Copernicus Publications (2022)
Constraining Enceladus' heat flow between its tiger stripes
Copernicus Publications (2022)