An early peak in the radio light curve of short-duration Gamma-Ray Burst 200826A

(2021)

Authors:

Lauren Rhodes, Rob Fender, David RA Williams, Kunal Mooley

MIGHTEE: are giant radio galaxies more common than we thought?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 501:3 (2021) 3833-3845

Authors:

J Delhaize, I Heywood, M Prescott, Mj Jarvis, I Delvecchio, Ih Whittam, Sv White, Mj Hardcastle, Cl Hale, J Afonso, Y Ao, M Brienza, M Brueggen, Jd Collier, E Daddi, M Glowacki, N Maddox, Lk Morabito, I Prandoni, Z Randriamanakoto, S Sekhar, Fangxia An, Nj Adams, S Blyth, Raa Bowler, L Leeuw, L Marchetti, Sm Randriamampandry, K Thorat, N Seymour, O Smirnov, Ar Taylor, C Tasse, M Vaccari

A self-lensing binary massive black hole interpretation of quasi-periodic eruptions

(2021)

Authors:

Adam Ingram, Sara Motta, Suzanne Aigrain, Aris Karastergiou

GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3-2.2 mu m extragalactic background light

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:2 (2021) 2033-2052

Authors:

Soheil Koushan, Simon P Driver, Sabine Bellstedt, Luke J Davies, Aaron SG Robotham, Claudia del P Lagos, Abdolhosein Hashemizadeh, Danail Obreschkow, Jessica E Thorne, Malcolm Bremer, Bw Holwerda, Matt J Jarvis, Andrew M Hopkins, Malgorzata Siudek, Rogier A Windhorst

Abstract:

We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey data sets, in nine multiwavelength filters to measure the COB in the range from 0.35  μm to 2.2  μm. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and γ-ray measurements are now fully consistent to within ∼10 per cent⁠, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the CSFH, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star formation rate lies in the range 0.066–0.076 M⊙ yr−1 Mpc−3 at a lookback time of 9.1 to 10.9 Gyr.

A test of the cosmological principle with quasars

Astrophysical Journal Letters IOP Publishing 908:2 (2021) L51

Authors:

Nathan Secrest, Sebastian Von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar, Jacques Colin

Abstract:

We study the large-scale anisotropy of the universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 μm from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of 5 × 10−7 (4.9σ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance ΛCDM model.