Deblending the MIGHTEE-COSMOS survey with XID+: The resolved radio source counts to S 1.4 ≈ 5μJy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag285

Authors:

Eliab Malefahlo, Matt J Jarvis, Mario G Santos, Catherine Cress, Daniel JB Smith, Catherine Hale, José Afonso, Imogen H Whittam, Mattia Vaccari, Ian Heywood, Shuowen Jin, Fangxia An

Abstract:

Abstract Deep radio continuum surveys provide fundamental constraints on galaxy evolution, but source confusion limits sensitivity to the faintest sources. We present a complete framework for producing high-fidelity deblended radio catalogues from the confused MIGHTEE maps using the probabilistic deblending framework XID+ and prior positions from deep multi-wavelength data in the COSMOS field. To assess performance, we construct MIGHTEE-like simulations based on the Tiered Radio Extragalactic Continuum Simulation (T-RECS) radio source population, ensuring a realistic distribution of star-forming galaxies and active galactic nuclei (AGN) for validation. Through these simulations, we show that prior catalogue purity is the dominant factor controlling deblending accuracy: a high-purity prior, containing only sources with a high likelihood of radio detection, recovers accurate flux densities and reproduces input source counts down to ~3σ (where σ = thermal noise). On the other hand, a complete prior overestimates the source counts due to spurious detections. Our optimal strategy combines the high-purity prior with a mask that removes sources detected above 50 μJy. Applied to the ~1.3 deg2 area of the MIGHTEE-COSMOS field defined by overlapping multi-wavelength data, this procedure yields a deblended catalogue of 89,562 sources. The derived 1.4 GHz source counts agree with independent P(D) analyses and indicate that we resolve the radio background to ~4.8 μJy. We also define a recommended high-fidelity sample of 20,757 sources, based on detection significance, flux density, and goodness-of-fit, which provides reliable flux densities for individual sources in the confusion-limited regime.

Investigating the influence of radio-faint active galactic nuclei on the infrared-radio correlation of massive galaxies

Astronomy & Astrophysics EDP Sciences 706 (2026) A111-A111

Authors:

Giorgia Peluso, Ivan Delvecchio, Jack Radcliffe, Emanuele Daddi, Roger Deane, Matt Jarvis, Giovanni Zamorani, Isabella Prandoni, Myriam Gitti, Cristiana Spingola, Francesco Ubertosi, Mark Sargent, Vernesa Smolčić, Wuji Wang, Jacinta Delhaize, Shuowen Jin, Adam Deller

Abstract:

Context. It is well known that star-forming galaxies (SFGs) exhibit a tight correlation between their radio and infrared emissions, commonly referred to as the infrared-radio correlation (IRRC). Recent empirical studies have reported a dependence of the IRRC on the galaxy stellar mass, in which more massive galaxies tend to show lower infrared-to-radio ratios ( q IR ) with respect to less massive galaxies. One possible, yet unexplored, explanation is a residual contamination of the radio emission from active galactic nuclei (AGNs), not captured through “radio-excess” diagnostics. Aims. To investigate this hypothesis, we aim to statistically quantify the contribution of AGN emission to the radio luminosities of SFGs located within the scatter of the IRRC. Methods. Our Very Large Baseline Array (VLBA) AGN-sCAN program has targeted 500 galaxies that follow the q IR distribution of the IRRC, i.e., with no prior evidence for radio-excess AGN emission based on low-resolution (∼arcsec) VLA radio imaging. Our VLBA 1.4 GHz observations reach a 5 σ sensitivity limit of 25 μJy/beam, corresponding to a radio-brightness temperature of T b  ∼ 10 5 K. This classification serves as a robust AGN diagnostic, regardless of the host galaxy’s star formation rate. Results. We detect four VLBA sources in the deepest regions, which are also the faintest VLBI-detected AGNs in SFGs to date. The effective AGN detection rate is 9%, when considering a control sample matched in mass and sensitivity, which is in good agreement with the extrapolation of previous radio AGN number counts. Despite the non-negligible AGN flux contamination (∼30%) in our individual VLBA detections, we find that the peak of the q IR distribution is completely unaffected by this correction. Although we cannot rule out a high incidence of radio-silent AGNs at (sub)μJy levels among the VLBA non-detections, we derive a conservative upper limit of < 0.1 dex of their cumulative impact on the q IR distribution. We conclude that residual AGN contamination from non-radio-excess AGNs is unlikely to be the primary driver of the M – dependent IRRC.

The odyssey of the black hole low mass X-ray binary GX 339–4: Five years of dense multi-wavelength monitoring.

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag139

Authors:

E Tremou, S Corbel, R Fender, P Woudt, JCA Miller-Jones, I Heywood, F Carotenuto, S Motta, A Tzioumis, PJ Groot, DM Russell, J Crook-Mansour, P Saikia, W Yu, J van den Eijnden, AJ van der Horst, DRA Williams-Baldwin, X Zhang

Abstract:

Abstract We present the longest and the densest quasi-simultaneous radio, X-ray and optical campaign of the black hole low mass X-ray binary GX 339–4, covering five years of weekly GX 339–4 monitoring with MeerKAT, Swift/XRT and MeerLICHT, respectively. Complementary high frequency radio data with the Australia Telescope Compact Array are presented to track in more detail the evolution of GX 339–4 and its transient ejecta. During the five years, GX 339–4 has been through two ‘hard-only’ outbursts and two ‘full’ outbursts, allowing us to densely sample the rise, quenching and re-activation of the compact jets. Strong radio flares were also observed close to the transition between the hard and the soft states. Following the radio flare, a transient optically thin ejection was spatially resolved during the 2020 outburst, and was observed for a month. We also discuss the radio/X-ray correlation of GX 339–4 during this five year period, which covers several states in detail from the rising phase to the quiescent state. This campaign allowed us to follow ejection events and provide information on the jet proper motion and its intrinsic velocity. With this work we publicly release the weekly MeerKAT L-band radio maps from data taken between September 2018 and October 2023.

Dynamic shocks powered by a wide, relativistic, super-Eddington outflow launched by an accreting neutron star in the mid-20th century

(2026)

Authors:

FJ Cowie, RP Fender, I Heywood, F Carotenuto, JH Matthews, B Reville, L Olivera-Nieto, AJ Cooper, AK Hughes, K Savard, PA Woudt, J van den Eijnden, N Grollimund, P Saikia

Evidence of mutually exclusive outflow forms from a black hole X-ray binary

(2026)

Authors:

Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P Fender, Andrew J Young, Jakob van den Eijnden, Christopher S Reynolds, Andrew C Fabian, Julien N Girard, Joey Neilsen, James F Steiner, John A Tomsick, Stà phane Corbel, Andrew K Hughes