Large-scale radio bubbles around the black hole transient V4641 Sgr

Astronomy & Astrophysics EDP Sciences (2026)

Authors:

N Grollimund, S Corbel, R Fender, JH Matthews, I Heywood, FJ Cowie, AK Hughes, F Carotenuto, SE Motta, P Woudt

Abstract:

Black holes (BHs) in microquasars can launch powerful relativistic jets that have the capacity to travel up to several parsecs from the compact object and interact with the interstellar medium. Recently, the detection of large-scale very-high-energy (VHE) gamma-ray emission around the black hole transient V4641 Sgr and other BH-jet systems suggested that jets from microquasars may play an important role in the production of galactic cosmic rays. V4641 Sgr is known for its superluminal radio jet discovered in 1999, but no radio counterpart of a large-scale jet has been observed. The goal of this work is to search for a radio counterpart of the extended VHE source. We observed V4641 Sgr with the MeerKAT radio telescope at the and bands and produced deep maps of the field using high dynamic range techniques. L UHF We report the discovery of a large-scale (∼ 35 ), bow-tie-shaped, diffuse, radio structure around V4641 Sgr, with similar angular size to the extended X-ray emission discovered by XRISM. However, it is not spatially coincident with the extended VHE emission. After discussing the association of the structure with V4641 Sgr, we investigate the nature of the emission mechanism. We suggest that the bow-tie structure arose from the long-term action of large-scale jets or disk winds from V4641 Sgr. If the emission mechanism is of synchrotron origin, the radio/X-ray extended structure implies acceleration of electrons up to more than 100 as far as tens of parsecs from the black hole. pc TeV

Large-scale radio bubbles around the black hole transient V4641 Sgr

(2026)

Authors:

Noa Grollimund, Stà phane Corbel, Rob Fender, James H Matthews, Ian Heywood, Fraser J Cowie, Andrew K Hughes, Francesco Carotenuto, Sara E Motta, Patrick Woudt

Evidence of mutually exclusive outflow forms from a black hole X-ray binary

Nature Astronomy (2026) 1-9

Authors:

Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P Fender, Andrew J Young, Jakob van den Eijnden, Christopher S Reynolds, Andrew C Fabian, Julien N Girard, Joey Neilsen, James F Steiner, John A Tomsick, Stéphane Corbel, Andrew K Hughes

Abstract:

Accretion onto black holes often leads to the launch of outflows that substantially influence their surrounding environments. The two primary forms of these outflows are X-ray disk winds—hot, ionized gases ejected from the accretion disk—and relativistic jets, which are collimated streams of particles often expelled along the rotational axis of the black hole. While previous studies have revealed a general association between spectral states and different types of outflow, the physical mechanisms governing wind and jet formation remain debated. Here, using coordinated NICER and MeerKAT observations of the recurrent black hole X-ray binary 4U 1630–472, we identify a clear anti-correlation between X-ray disk winds and jets: during three recent outbursts, only one type of outflow is detected at a time. Notably, this apparent exclusivity occurs even as the overall accretion luminosity remains within the range expected for a standard thin disk, characteristic of the canonical soft state. These results suggest a competition between outflow channels that may depend on how the accretion energy is partitioned between the disk and the corona. Our findings provide observational constraints on jet and wind formation in X-ray binaries and offer a fresh perspective on the interplay between different modes of accretion-driven feedback.

FRB 20240619D: a study of the hyperactivity, rotation measure evolution, and searches for a persistent radio source

Monthly Notices of the Royal Astronomical Society Oxford University Press 545:4 (2025) staf2222

Authors:

Kavya Shaji, Jun Tian, Manisha Caleb, Kaustubh Rajwade, Ben Stappers, Inés Pastor-Marazuela, Tara Murphy, Ewan Barr, Ashna Gulati, Fabian Jankowski, Michael Kramer, Yu Wing Joshua Lee, Pavan Uttarkar

Abstract:

This paper presents a comprehensive wideband study of FRB 20240619D focusing on its hyperactivity, rotation measure evolution, and the search for an associated persistent radio source. Using data from the MeerKAT, Murriyang, and Lovell telescopes, we analysed the spectral, temporal, and polarimetric properties of 1539 bursts. Our observations reveal a remarkably high burst rate of 161 bursts per hour in early August above a fluence value of 1.6 Jy ms as well as significant secular variations in rotation measure and diverse polarization characteristics, including high linear polarization fractions and occasional circular polarization. The burst activity also showed frequency dependence with approximately 61 per cent of the total number of bursts detected between 1300 and 1800 MHz. The burst activity of FRB 20240619D ceased abruptly after a period of intense activity lasting approximately 80 d, suggesting an episodic behaviour. Follow-up observations with MeerKAT and Australia Telescope Compact Array did not reveal an associated compact persistent radio source. Altogether, our results highlight the importance of continued long-term monitoring and multiwavelength observations in understanding the emission mechanisms and diversity of progenitor populations of fast radio bursts.

Discovery of a z ∼ 0.8 ultra steep spectrum radio halo in the MeerKAT-South Pole Telescope Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:1 (2025) staf2022

Authors:

Isaac S Magolego, Roger P Deane, Kshitij Thorat, Ian Heywood, William Rasakanya, Manuel Aravena, Lindsey E Bleem, Maria G Campitiello, Kedar A Phadke, Justin Spilker, Joaquin D Vieira, Dazhi Zhou, Bradford A Benson, Scott Chapman, Ana Posses, Tim Schrabback, Antony Stark, David Vizgan

Abstract:

ABSTRACT Radio haloes are diffuse synchrotron sources that trace the turbulent intracluster medium (ICM) of galaxy clusters. However, their origin remains unknown. Two main formation models have been proposed: the hadronic model, in which relativistic electrons are continuously injected by cosmic-ray protons; and the leptonic turbulent re-acceleration model, where cluster mergers re-energize electrons in situ. A key discriminant between the two models would be the existence of ultra-steep spectrum radio haloes (USSRHs), which can only be produced through turbulent re-acceleration. Here, we report the discovery of an USSRH in the galaxy cluster SPT-CLJ2337–5942 at redshift $z = 0.78$ in the MeerKAT-South Pole Telescope 100 deg$^2$ UHF (0.58–1.09 GHz) survey. This discovery is noteworthy for two primary reasons: it is the highest redshift USSRH system to date; and the close correspondence of the radio emission with the thermal ICM as traced by Chandra X-ray observations, further supporting the leptonic re-acceleration model. The halo is underluminous for its mass, consistent with a minor merger origin, which produces steep-spectrum, lower luminosity haloes. This result demonstrates the power of wide-field, high-fidelity, low-frequency ($\lesssim 1$ GHz) surveys like the MeerKAT-SPT 100 deg$^2$ programme to probe the origin and evolution of radio haloes over cosmic time, ahead of the Square Kilometre Array.