Initial results from a realtime FRB search with the GBT
Monthly Notices of the Royal Astronomical Society Oxford University Press 497:1 (2020) 352-360
Abstract:
We present the data analysis pipeline, commissioning observations, and initial results from the GREENBURST fast radio burst (FRB) detection system on the Robert C. Byrd Green Bank Telescope (GBT) previously described by Surnis et al., which uses the 21-cm receiver observing commensally with other projects. The pipeline makes use of a state-of-the-art deep learning classifier to winnow down the very large number of false-positive single-pulse candidates that mostly result from radio frequency interference. In our observations, totalling 156.5 d so far, we have detected individual pulses from 20 known radio pulsars that provide an excellent verification of the system performance. We also demonstrate, through blind injection analyses, that our pipeline is complete down to a signal-to-noise threshold of 12. Depending on the observing mode, this translates into peak flux sensitivities in the range 0.14–0.89 Jy. Although no FRBs have been detected to date, we have used our results to update the analysis of Lawrence et al. to constrain the FRB all-sky rate to be 1150+200−180 per day above a peak flux density of 1 Jy. We also constrain the source count index α = 0.84 ± 0.06, which indicates that the source count distribution is substantially flatter than expected from a Euclidean distribution of standard candles (where α = 1.5). We discuss this result in the context of the FRB redshift and luminosity distributions. Finally, we make predictions for detection rates with GREENBURST, as well as other ongoing and planned FRB experiments.New Constraints on the Origin of Surface Brightness Profile Breaks of Disk Galaxies from MaNGA
The Astrophysical Journal American Astronomical Society 897:1 (2020) 79
Resolved observations at 31 GHz of spinning dust emissivity variations in rho Oph
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 495:3 (2020) 3482-3493
Abstract:
© 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. The ρ Oph molecular cloud is one of the best examples of spinning dust emission, first detected by the cosmic background imager (CBI). Here, we present 4.5 arcmin observations with CBI 2 that confirm 31 GHz emission from ρ Oph W, the PDR exposed to B-Type star HD 147889, and highlight the absence of signal from S1, the brightest IR nebula in the complex. In order to quantify an association with dust-related emission mechanisms, we calculated correlations at different angular resolutions between the 31 GHz map and proxies for the column density of IR emitters, dust radiance, and optical depth templates. We found that the 31 GHz emission correlates best with the PAH column density tracers, while the correlation with the dust radiance improves when considering emission that is more extended (from the shorter baselines), suggesting that the angular resolution of the observations affects the correlation results. A proxy for the spinning dust emissivity reveals large variations within the complex, with a dynamic range of 25 at 3σ and a variation by a factor of at least 23, at 3σ, between the peak in ρ Oph W and the location of S1, which means that environmental factors are responsible for boosting spinning dust emissivities locally.Interactions among intermediate redshift galaxies
Astronomy & Astrophysics EDP Sciences 639 (2020) a30
K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 < z < 0.6
Monthly Notices of the Royal Astronomical Society Oxford University Press 496:3 (2020) 3841-3861