Multiwavelength consensus of large-scale linear bias

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 493:1 (2020) 747-764

Authors:

Hengxing Pan, Danail Obreschkow, Cullan Howlett, Claudia del P Lagos, Pascal J Elahi, Carlton Baugh, Violeta Gonzalez-Perez

The rest-frame UV luminosity function at z≃4 : a significant contribution of AGN to the bright-end of the galaxy population

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 1771-1783

Authors:

Nathan Adams, Rebecca Bowler, Matthew Jarvis, Boris Haussler, Ross McLure, Andrew Bunker, James Dunlop, Aprajita Verma

Abstract:

We measure the rest-frame UV luminosity function (LF) at z ∼ 4 self-consistently over a wide range in absolute magnitude (−27 . MUV . −20). The LF is measured with 46,904 sources selected using a photometric redshift approach over ∼ 6 deg2 of the combined COSMOS and XMM-LSS fields. We simultaneously fit for both AGN and galaxy LFs using a combination of Schechter or Double Power Law (DPL) functions alongside a single power law for the faint-end slope of the AGN LF. We find a lack of evolution in the shape of the bright-end of the LBG component when compared to other studies at z ' 5 and evolutionary recipes for the UV LF. Regardless of whether the LBG LF is fit with a Schechter function or DPL, AGN are found to dominate at MUV < −23.5. We measure a steep faint-end slope of the AGN LF with αAGN = −2.09+0.35 −0.38 (−1.66+0.29 −0.58) when fit alongside a Schechter function (DPL) for the galaxies. Our results suggest that if AGN are morphologically selected it results in a bias to lower number densities. Only by considering the full galaxy population over the transition region from AGN to LBG domination can an accurate measurement of the total LF be attained.

A Rapid Change in X-Ray Variability and a Jet Ejection in the Black Hole Transient MAXI J1820+070

The Astrophysical Journal Letters American Astronomical Society 891:2 (2020) l29

Authors:

Jeroen Homan, Joe Bright, Sara E Motta, Diego Altamirano, Zaven Arzoumanian, Arkadip Basak, Tomaso M Belloni, Edward M Cackett, Rob Fender, Keith C Gendreau, Erin Kara, Dheeraj R Pasham, Ronald A Remillard, James F Steiner, Abigail L Stevens, Phil Uttley

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: technical specifications and performance forecasts

Publications of the Astronomical Society of Australia Cambridge University Press 37 (2020) e007

Authors:

David J Bacon, Richard A Battye, Philip Bull, Stefano Camera, Pedro Ferreira, Ian Harrison, David Parkinson, Alkistis Pourtsidou, Mario G Santos, Laura Wolz, Filipe Abdalla, Yashar Akrami, David Alonso, Sambatra Andrianomena, Mario Ballardini, Jose Luis Bernal, Daniele Bertacca, Carlos AP Bengaly, Anna Bonaldi, Camille Bonvin, Michael L Brown, Emma Chapman, Song Chen, Xuelei Chen, Steven Cunnington, Tamara M Davis, Clive Dickinson, Jose Fonseca, Keith Grainge, Stuart Harper, Matthew Jarvis, Roy Maartens, Natasha Maddox, Hamsa Padmanabhan, Jonathan R Pritchard, Alvise Raccanelli, Marzia Rivi, Sambit Roychowdhury, Martin Sahlen, Dominik J Schwarz, Thilo M Siewert, Matteo Viel, Francisco Villaescusa-Navarro, Yidong Xu, Daisuke Yamauchi, Joe Zuntz, Square Kilometre Array Cosmology Science Working Group

Abstract:

We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from z = 0.35 to 3; and a deep, high-redshift HI IM survey over 100 deg2 from z = 3 to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to z ~ 3 with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to z = 6. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.

A rapid change in X-ray variability and a jet ejection in the black hole transient MAXI J1820+070

(2020)

Authors:

Jeroen Homan, Joe Bright, Sara E Motta, Diego Altamirano, Zaven Arzoumanian, Arkadip Basak, Tomaso M Belloni, Edward M Cackett, Rob Fender, Keith C Gendreau, Erin Kara, Dheeraj R Pasham, Ronald A Remillard, James F Steiner, Abigail L Stevens, Phil Uttley