Characterisation and Testing of CHEC-M - a camera prototype for the Small-Sized Telescopes of the Cherenkov Telescope Array

(2018)

Authors:

J Zorn, R White, JJ Watson, TP Armstrong, A Balzer, M Barcelo, D Berge, R Bose, AM Brown, M Bryan, PM Chadwick, P Clark, H Costantini, G Cotter, L Dangeon, M Daniel, A De Franco, P Deiml, G Fasola, S Funk, M Gebyehu, J Gironnet, JA Graham, T Greenshaw, JA Hinton, M Kraus, JS Lapington, P Laporte, SA Leach, O Le Blanc, A Malouf, P Molyneux, P Moore, H Prokoph, A Okumura, D Ross, G Rowell, L Sapozhnikov, H Schoorlemmer, H Sol, M Stephan, H Tajima, L Tibaldo, G Varner, A Zink

On the optical counterparts of radio transients and variables

Monthly Notices of the Royal Astronomical Society Oxford University Press 479:2 (2018) 2481-2504

Authors:

AJ Stewart, T Muñoz-Darias, Robert Fender, M Pietka

Abstract:

We investigate the relation between the radio (Fr) and optical (Fo) flux densities of a variety of classes of radio transients and variables, with the aim of analysing whether this information can be used, in the future, to classify such events. Using flux density values between 1 and 10 GHz and the optical bands V and R, we build a sample with a total of 12 441 Fr and Fo measurements. The sample contains both Galactic objects, such as stellar sources and X-ray binaries, and extragalactic objects, such as gamma-ray bursts and quasars. By directly comparing the two parameters, it is already possible to distinguish between the Galactic and extragalactic populations. Although individual classes are harder to separate from the Fr − Fo parameter space to a high accuracy, and can only provide approximations, the basic approach provides an already useful foundation to develop a more accurate classification technique. In addition, we illustrate how example objects from different classes move in the parameter space as they evolve over time, offering a feature that could be used to reduce the confusion between classes. A small, blind test of the classification performance is also undertaken using a catalogue of VLA FIRST transient and variable sources, to demonstrate the advantages and current limitations of the approach. With more multiwavelength data becoming available in the future, we discuss other classification techniques which the Fr − Fo method could be combined with and potentially become an important part of an automatic radio transient classification system.

The galactic halo pulsar population

Monthly Notices of the Royal Astronomical Society Oxford University Press 479:3 (2018) 3094-3100

Authors:

K Rajwade, Jayanth Chennamangalam, D Lorimer, Aristeidis Karastergiou

Abstract:

Most population studies of pulsars have hitherto focused on the disc of the Galaxy, the Galactic centre, globular clusters, and nearby galaxies. It is expected that pulsars, by virtue of their natal kicks, are also to be found in the Galactic halo. We investigate the possible population of canonical (i.e. non-recycled) radio pulsars in the halo, estimating the number of such pulsars, and the fraction that is detectable via single pulse and periodicity searches. Additionally, we explore the distributions of flux densities and dispersion measures (DMs) of this population. We also consider the effects of different velocity models and the evolution of inclination angle and magnetic field on our results. We show that ∼33  % of all pulsars beaming towards the Earth are in the halo but the fraction reduces to ∼1.5  % if we let the inclination angle and the magnetic field evolve as a falling exponential. Moreover, the fraction that is detectable is significantly limited by the sensitivity of surveys. This population would be most effectively probed by surveys using time-domain periodicity search algorithms. The current non-detections of pulsars in the halo can be explained if we assume that the inclination angle and magnetic field of pulsars evolve with time. We also highlight a possible confusion between bright pulses from halo pulsars and fast radio bursts with low DMs where further follow-up is warranted.

On the optical counterparts of radio transients and variables

(2018)

Authors:

AJ Stewart, T Muñoz-Darias, RP Fender, M Pietka

Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, design and target catalogue

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 768-799

Authors:

LJM Davies, ASG Robotham, SP Driver, CP Lagos, L Cortese, E Mannering, C Foster, C Lidman, A Hashemizadeh, S Koushan, S O’Toole, IK Baldry, M Bilicki, J Bland-Hawthorn, MN Bremer, MJI Brown, JJ Bryant, B Catinella, SM Croom, MW Grootes, BW Holwerda, Matthew J Jarvis, N Maddox, M Meyer, AJ Moffett

Abstract:

The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ∼60 000 galaxies to Y < 21.2mag, over ∼6 deg2 in threewell-studied deep extragalactic fields (CosmicOrigins Survey field, COSMOS; Extended Chandra Deep Field South, ECDFS; and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS – all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of near-infrared colours and has been validated by visual inspection. To maximize our observing efficiency for faint targets, we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night’s observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.