LOFAR/H-ATLAS: the low-frequency radio luminosity–star formation rate relation
Monthly Notices of the Royal Astronomical Society Oxford University Press 475:3 (2018) 3010-3028
Abstract:
Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity–star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity–star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li
(2018)
SPIRITS 16tn in NGC 3556: A Heavily Obscured and Low-luminosity Supernova at 8.8 Mpc
ASTROPHYSICAL JOURNAL 863:1 (2018) ARTN 20
Are gamma-ray novae intrinsically rare or just nearby?
Proceedings of Science Proceedings of Science 312:7th International Fermi Symposium (IFS2017) (2017) 1-6
Abstract:
Fermi LAT data revealed classical novae as unexpected gamma-ray sources, yet only 6 of 69 of those optically detected in the first 8 years of Fermi LAT observations were confirmed as > 5? gamma-ray sources. These proceedings outline Monte Carlo simulations in which a population of Galactic novae were simulated based on spatial distributions and R-band magnitudes based on their M31 counterparts. Interstellar extinction was added using a double exponential disc model, and gamma-ray properties were defined based on those of the original 6 gamma-ray novae. We demonstrate that observations are consistent will all classical novae being gamma-ray sources, and that the gamma-ray sky background is the largest inhibitor when discovering these sources. Furthermore, we predict that all classical novae occurring within ? 8 kpc and with m R ? 12 will be detected using the Fermi LAT.Improving Photometric Redshift Estimation using GPz: size information, post processing and improved photometry
Monthly Notices of the Royal Astronomical Society Oxford University Press 475:1 (2017) 331-342